
BÖ« üHii^iiaZiSSiCSSSIi^ffiS^lSSItalSl^aeiK^Silli

. i]

REPORT DOCUMENTATION PAGE
Form Approved

OMB Wo. 0704-0188

V«
Public reporting burden for this collection of information is estimated to average l' our per response, including the tfme for reviewing" instructions, searching existing data sources,
gathering and maintaining the data needed, and ccrroleting and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway. Suite 1204. Arlington, VA 22202 -4302. and to the Off ice of Management and Budget. Paperwork Reduction Project (0704-0 188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

final 01 MAY 94 TO 31 OCT 95
4. TITLE AND SU8TITLE

FAULT-TOLERANCE IN DISTRIBUTED AND MULTIPROCESSOR REAL
TIME SYSEMS

6. AUTHOR(S)

DR. DHIRAJ K. PRADHAN

7. PERFORMING ORGANIZATION NAME(S) AND ADDRSSS(ES)

TEXAS A&M UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE
COLLEGE STATION TX 77843-3112

L

5. FUNDING NUMBERS

F49620-94-1-0276
2304/HS 61102F

AFOSR-TR-96

9. SPOi^SCKiriG ■■'TwlC^. ■ CruMG AGciV^/ ?

! AFSOR/NM
* 110 DUNCAN AVE SUITE B115
i BOLLING AFB DC 20332-0001

■■c\3) A,iU Mjoncjjic^: j?O:'i JC RING M O N i T O R iNC
AGiHd REPORT NUMBER

F49620-94-1-0276

DISTRIBUTION UNLIMITED
APPROVED FOR PUBLIC RELEASE

SEE REPORT FOR ABSTRACT

19960520 044
14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

1 17. SECURITY CLASSIFICATION j 13. SECURITY CLASSIF1CA"
i OF REPOF

UNCLASSIFIED
OF THIS PAGE

] UNCLASSIFIED

13. SECURITY CLASSIFiCAT
OF ABSTRACT

UNCLASSIFIED

<ip ■ /\ T : r> ■-: .n z * o 3STR.

SAR

DTIO QDAUTX INSPECTED 1

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE

COPY FURNISHED TO DTIC

CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO

NOT REPRODUCE LEGIBLY.

-.*---'*• "*
«.^lm»o««i.i**.rf+l^'*»i.*A»Tv'?w» '

FT*"*-.(■£>.v>«»-_- -THj-.-r:

F -Tolerance in Distributed fand

Multiprocessor Real Time Systems

&rt

1
AFOSR F49620-94-1-0276

1 May 94 — 31 Oct 95

Final Report

I

Ll

Li

i !

tef

(.V

LI;

Dhiraj K. Pradhan

pradlaan@cs.tamu.edu
Phone: 409/862-2438
Fax: 409/S62-275S

Department of Computer Science
Texas A&M University

College Station TX 77843-3112

Department of Computer Science
\ Te x as A & Mllh i v e r s i t y
CD: i *

/ 301 Harvey R. Bright Bldg • College Station, Texas 77843-3112

U

Tsr

'■%

Table of Contents

L Research in Reliable I/O Design 1

IL Research in Fault Injection 19

HI. Research in Mobile Computing 30

IV. Lagorithras for Loadbalancing 44

V. Software Fault-Tolerance 61

Publications supported by AFOSR F49620-94-1-0276

1. "Fault Injection: A Method for Validating Computer-System
Dependability," (J. Clark and D. Pradhan), IEEE Computer, June 1995.

2. "Providing Seamless Communications in Mobile Wireless Networks,".(P.
Krishna, B. Bakshi, N. Vaidya, and D. Pradhan), 1st International Conference
on Mobile Computing and Networking, November 1995.

3. "Performance and Reliability Assessment of I/O Subsystems," (F. Meyer, D.
Pradhan and N. Vaidya), 4th IEEE International Workshop on Evaluation
Techniques for Dependable Systems, October 1995.

4. "Processor Allocation in Hypercube Multicomputers: Fast and Efficient
Strategies for Cubic and Noncubic Allocation," (D. Das Sharma, D. Pradhan),
IEEE Transactions on Parallel and Distributed Systems, October 1995.

5. "Cooperating Diverse Experts: A Methodology to Develop Quality Software
for Critical Decision Support Systems," (D. Pradhan, H. Hecht, M. Hecht, F.
Meyer and N. Vaidya), IEEE Aerospace Applications Conference, February
1995.

I. Research in Reliable I/O Design

1 Overview
In modern computing systems, I/O is a limiting factor in both performance and reliability.
In this research investigation, we concentrated on evluating disk organizations that have
been proposed in the literature to solve "the I/O problem".

The loss or unavailability of data may have substantial impact on various applications
(finance, ground control, etc.). This often justifies using coding techniques to substantially
lower the risk. For modest data spaces, the simple duplication of disks and controllers (disk
duplexing) is an inexpensive and often effective solution. For systems requiring high I/O
bandwidth or having vast data spaces, a fleet of disks will be needed. Redundant Arrays of
Inexpensive Disks (RAID) [4, 6, 8] were proposed to overcome the reliability problems that
come with relying on a large number of disks.

The classical RAID architecture consists of a set of disks attached to a custom controller
as shown in Figure 1. The information on one of the disks is designated as parity while the
remaining disks contain data [9]. The code implemented is the (N + l,N) parity check code.
It is suitable for correcting one erasure. An erasure is the equivalent of a self-identifying disk

failure.

D D D D P

controller

Figure 1: RAID Level 5 architecture

Since every data update involves writing both to the appropriate data disk and to the
single parity disk, there may be a bottleneck at the parity disk. As a result, RAID Level
5 specifies that the parity be rotated. Imagine that the data placement is rotated one disk

p to the right. With N + 1 disks, this may be done repeatedly to obtain N + 1 different, but
|| equally functional possibilities for parity. The data space is divided into N + l smaller spaces

of roughly equal size. Each one of these subdivisions is then associated with its own parity
fl position. This distributes the read and write load evenly across the disks.
*s: RAID Level 5 does a passable job of surviving disk failures. For I/O subsystems with

more stringent reliability requirements or with many disks, RAID Level 6 is attractive. RAID
Level 6 uses a (N + 2, N) Reed-Solomon code, which can correct any two disk failures.

We aimed specifically at assessing RAID-like disk organizations considering that other
elements of the I/O subsystem can also fail—for example, controllers, cables, and power

|^ supplies. Current shipping RAID products are inherently unreliable, because their controllers
are critical components. Since controllers can fail, it is natural to consider what happens

, -j when every disk attached to a controller becomes unavailable. So we view having multiple
. | controllers with multiple disks connected to each; this looks logically like a two-dimensional

array. If each column of the array has a controller assigned to it, then for simplicity we say
that any failures in the I/O subsystem that do not merely affect a single disk affect a column

£ of disks. Moreover, we will assume that the failure rates for such columns are not vanishingly
small—so, unlike nearly all previous work, we do not ignore such failures. In referring to any

■v failure affecting an entire column of disks, we will generally simply say 'controller failure'.

FT;

The classical two-dimensional arrangement to handle controller failures [10] is depicted
in the left side of Figure 2. Each row of the array is a 'parity group' (is governed by one
parity equation). The top row depicted, and all other rows, implements a. (N + l,N) code
that can correct any single erasure. Each column of disks has a controller attached to it
(two shown in the figure). Consequently, failure of a controller will affect one disk from each
parity group—failure of two disks in the same parity group does not result from a controller
failure. Reliability can be enhanced by providing a dual path to the disks, as is depicted in
the left side of the figure. Two controller failures must occur in order to have the effect of
making an entire column inaccessible.

D D D

.•

p D -i

D

D

P -

Figure 2: Dual path and Crosshatch controller placements

fS3

We refer to these two options as 'single path' and 'dual path'. With the parity groups
arranged horizontally, as shown, we refer to the method used as either 'single path horizontal'
or as 'dual path horizontal' [10].

Another method, which is even more effective in protecting against controller failures,
is the Crosshatch [7] placement of controllers depicted in the right side of Figure 2. In the
Crosshatch arrangement, there are row controllers and column controllers. In order for a
disk to become inaccessible from controller failures, both its corresponding row controller
and its corresponding column controller must have failed. With this method, it is most
sensible to have the parity groups comprised of diagonally related disks. This Crosshatch
diagonal method provides complete protection against triple controller failures. I.e., if three
controllers fail, at most two disks may become inaccessible. Moreover, those two disks must
be in either the same column or the same row—therefore, they cannot be in the same parity
group.

We focus on the reliability of the proposed disk organizations. In the next section, we
eliminate some proposed disk organizations, because they are subject to single points of
failure. In the section following that, we describe our own proposed disk organization.

2 Disk Organizations and Their Masked Faults

It should be noted that the dual path horizontal and Crosshatch diagonal methods depicted
in Figure 2 require that each disk support access by two controllers. Such dual-ported disks
are not commodity products to the extent that single-ported disks are. Therefore, we first
classify RAID-like disk organizations according to whether they support single-ported disks
or require dual-ported disks.

Table 1 shows which fault combinations are masked by various disk organizations. All
of these disk organizations support single-ported disks. The column headings signify the
component failures—e.g, 'DDC means two disk failures and one controller failure. A method
is awarded a '1' if it tolerates all combinations of faults of the quantity given. (E.g., RAID
Level 5 tolerates all single disk failures, 'D'.) A method is awarded a '< 1' if it tolerates
nearly all such combinations of failures. (E.g., disk duplexing is not guaranteed to tolerate
all double disk failures, 'DD', but it tolerates nearly all of them.) '0' indicates the method
does poorly with the fault combination. A dash signifies that the method already fails to
tolerate a lesser fault combination. (E.g., no indication is given for disk duplexing and triple
disk failures, because disk duplexing does not mask all double disk failure combinations.)

Method D C DD DC cc DDD DDC DCC ^ccc
Disk duplexing 1 1 <1 0 0 - - - -

RAID Level 5 [6] 1 0 0 - - - - - -

RAID Level 6 [6] 1 0 1 - - 0 - - -

EVENODD [i; 1 0 1 - - 0 - - -

Single path horizontal 10] 1 1 0 0 0 - - - -

Single path ORAID GF(4) 1 1 1 0 0 <1 - - -

Modified EVENODD 1 1 1 1 1 < 1 0 0 0

Table 1: Fault coverage using single-ported disks

m
Since RAID Level 5, RAID Level 6, and EVENODD do not tolerate all single points of

failure, we will not discuss them further.
The disk organization given as modified EVENODD results from looking at the work

in [1] from the perspective of unreliable controllers. That work, in discussing disk failures,
represents each disk as a column—each element of the column being some portion of the
disk. The code given in [1] does not have a high rate, so it is able to mask double column
erasures. For the discussion in [1], that corresponds to double disk failures. But for our
discussion, we can imagine that the code is implemented across multiple controllers—where
each controller is a column and each disk is a column element. The strength of the code
yields excellent fault masking. The penalties for this are: (1) the rate of the code is less, so
more disks are needed, although the rate is higher than with disk duplexing and (2) writing
to the file system requires more disk operations.

Table 2 shows the same information for disk organizations that require dual-ported disks.
In this case the EVENODD disk organization is as in [1] and the controller is duplicated.

Since these disk organizations require dual-ported disks they are only plausible for ultra-
reliable systems. As we discovered in our reliability analysis, only the Crosshatch ORAID

m

Method D C DD DC cc DDD DDC DCC ccc
Dual path RAID Level 5 1 0 1 0 - - - -

Dual path RAID Level 6 1 1 1 0 0 1 - -

Dual path EVENODD 1 1 1 0 0 1 - -

Dual path horizontal [10] 1 0 1 1 - - 0 1
Crosshatch diagonal [7] 1 0 1 1 - - 0 1

Crosshatch ORAID GF(4) 1 1 1 1 < 1 1 1 1

Table 2: Fault coverage using dual-ported disks

disk organization can justify itself.

3 Description of ORAID Architecture

Figure 3 shows the basic physical architecture of ORAID. In this figure the 'single path' disk
arrangement is shown.

r>
r0 "01 "02 "03

f^_

n
^ 10 rl "12 "13

(Zi

"20 "21 r2 "23

£"

D31
r> D

"30 "32 x3

Co Ci c2 c3

Figure 3: ORAID architecture

lä

The parity disks—PQ, Pi, and so forth-—are located along the major diagonal of the array.
For convenience, we use the notation P,- and Da interchangeably. The controllers, C,-, are
attached to each column.

Let there be k controllers and k2 disks. The code used is systematic, so for each disk,
A'j, i 7^ j, the disk simply contains the data. To read data, all that need be done is to
determine which data disk contains the desired block.

The contents of the parity disks are defined as follows:

. Pi = E^.- + «E^

where addition is over a Galois field GF(2P) for some positive integer p. a is a generator for
GF(2P). In the case of GF(2), a = 1. There are several plausible choices for the Galois field:

rn GF(2), GF(4), GF(8), GF(16), etc. We refer to these disk organizations as, for example,
^ ORAID over GF(8). When constrained to allow single-ported disks, ORAID cannot really

compete with the modified EVENODD disk organization. So we will only consider ORAID
f for systems with dual-ported disks (the Crosshatch layout). To achieve an ultrareliable I/O

subsystem requires, at the outset that all double disk failures be tolerated. Since ORAID
over GF(2) is vulnerable to some double disk failures, we eliminate that as well. That leaves
GF(4) or a higher-order field. Using a field of order greater than 8 does not allow ORAID to
mask any additional fault combinations, so the natural possibilities are ORAID over GF(4)
and ORAID over GF(8). (If not using GF(4), it will likely be appropriate to choose a field

vi like GF(16), so that each symbol can be represented by 4 bits instead of 3.)
The code used is merely a parity product code with the row and column parities folded

into each other. The diagonal elements of the product code are not used for data and the
parity elements are positioned in their place.

As with all disk organizations we investigated, we assumed that the parities are horizon-
tally rotated in order to balance the load across the disks under fault-free operation. For

•:. •*' convenience in the ensuing discussion, we do not refer to parity rotation further. The anal-
ysis we conducted showed that taking parity rotation into consideration does not materially

f$ affect the results.
&-' Applications make read and write requests of the data space. But in RAID architectures

these requests do not map directly to disk read and write operations. We define five elemental
J; I/O subsystem operations:

R Read a disk block

!"' • W Write a disk block

M Perform a read-modify-write sequence on a disk block[6]

g S Scale a buffer block (i.e., multiply by a Galois field element)

A Add (XOR) two buffers (from different disk controllers)

The scaling (S) and adding (A) operations are conducted by either the I/O processor
or a custom disk controller; scaling in ORAID is only applicable when not using GF(2).
In GF(2P), addition may be made equivalent to XOR. So the read-modify-write operation
consists of reading a disk block, XOR-ing it into the contents of a buffer, and then writing
that buffer back into the place of the original disk block. The read-modify-write operation
entails only one disk seek, but one additional disk revolution must occur instead of a disk
read operation (assuming that a block is confined to one disk track). A read immediately
followed by a write to the same disk block is considered to be a read-modify-write operation
even when no modification (XOR) occurs or when the XOR result is not the data written.

Table 3 shows the total disk load under fault-free conditions, r and w are the rates of
logical disk reads and writes, respectively. These logical reads and writes must be translated
into the elemental I/O operations. Single path and dual path organizations have the same
load.

Like RAID Level 6, OllAID requires updating three disks whenever a block of data is
written. Both those schemes tolerate all double disk failures; and, as is well known, three

Method Read Write Read-Modify-Write Scale

Disk duplexing r 2w 0 0
RAID Level 5 (3 disks) r + w 2w 0 0

RAID Level 5 r 0 2w 0
RAID Level 6 r 0 Zw w

EVENODD r 0 3w 0
Horizontal (single/dual) r 0 2w 0

Modified EVENODD r 0 Aw 0
Crosshatch diagonal r 0 2w 0

ORAID GF(4) r 0 3w w

Table 3: Fault-free disk load

updates are necessary to do that. The extra read-modify-write operation is the price that
must be paid to tolerate all double disk failures.

To establish the claim that ORAID needs only one scaling- operation and three read-
modify-write disk operations for each data write request, one need only examine Figure 4.

■m

4 Summary of Conclusions

We investigated RAID-like disk organizations proposed in the literature, with particular
emphasis on their reliability when subject to controller failures. Since disk duplexing was the
only viable disk organization for single-ported disks, we proposed two new disk organizations
to achieve ultrareliable I/O subsystems in the presence of controller failures. The first method
is a direct adaptation of the EVENODD disk organization propounded in [1] and achieves
high reliability using commodity single-ported disks. The other disk organization introduced,
Crosshatch ORAID, achieves ultra high reliability using dual-ported disks.

Disk duplexing will be the preferred solution for most low-end file servers. It may be
inadequate on either performance or reliability grounds. In both cases, the modified EVEN-
ODD disk organization is attractive. RAID Level 5 and RAID Level 6 are not comparable
for either performance or reliability. While the single path horizontal disk organization [10]
has the potential for performance comparable to the modified EVENODD disk organization,
its reliability is seen to be uniformly even worse than disk duplexing.

When very high reliability is required, it may be necessary to use dual-ported disks to
achieve this. (There is a coincidental opportunity to improve performance in doing so.)
In considering the reliability of various dual-ported disk organizations, it is seen that only
the Crosshatch ORAID disk organization distinguishes itself from disk duplexing in terms of
reliability. A more interesting comparison, considering the complexities involved, is whether
the modified EVENODD disk organization is adequate, because it would allow the use of
single-ported disks (albeit more of them). We can conclude that the modified EVENODD
disk organization is suitable for ultrareliable I/O subsystems (< 0.1% probability of data

*tl

»$

Determine (i,j)
Cj (bufferi) <— Data

CJ: buffer2 +- buffer © Dy
— buffer two contains modification

CJ: D^ <- buffen
— data now in place

C,-(buffer2) <- aCi(buffer2)
— C{ now knows the modification (scaled)

Cf. bufferi «- buffer2 © P,-
CJ: PJ *- bufferi

— parity updated

d: buffer! *- buffer2 © Pt-

C,-: P <- bufferx
— parity updated

Figure 4: Writing to £>,j

loss in any given year) provided all of the following are true: 1) controllers (data paths) are
reasonably reliable, 2) disk reconstruction times (mostly disk size and speed) are reasonable,
and 3) the number of data disks (disk size and data space size) are not gargantuan. Details
are in the appendix.

References

[1] M. Blaum, J. Brady, J. Bruch, and J. Menon, "EVENODD: An efficient scheme for tol-
erating double disk failures in RAID architectures," IEEE Transactions on Computers,

vol. 44, no. 2, February 1995, pp. 192-202.

[2] W. Burkhard and J. Menon, "Disk Array Storage System Reliability," 23rd Fault-
Tolerant Computing Symposium, pp. 432-441, June 1993.

[3] R. Butler and S. Johnson, "Techniques for Modeling the Reliability of Fault-Tolerant
Systems with the Markov State-Space Approach," NASA Reference Publication 134-8,

September 1995.

[4] J. Chandy and P. Banerjee, "Reliability Evaluation of Disk Array Architectures," In-
ternational Conference on Parallel Processing, Saint Charles IL, pp. 264-269, August

1993.

[5] A. Drapeau, et alii, "KAID-II: A High-Bandwidth Network File Server," 21st Interna-
tional Symposium on Computer Architecture, Chicago, pp. 234-244, April 1994.

m

m

M

[6] G. Gibson, Redundant Disk Arrays: Reliable, Parallel Secondary Storage, Ph.D. disser-
tation, MIT, 1992.

[7] S. Ng, "Crosshatch Disk Array for Improved Reliability and Performance," 21st Inter-
national Symposium on Computer Architecture, Chicago, pp. 255-264, April 1994.

[8] D. Patterson, G. Gibson, and R. Katz, "A Case for Redundant Arrays of Inexpensive
Disks (RAID)," ACMSIGMOD Conference, Chicago, pp. 109-116, June 1988.

[9] T. Rao and E. Fujiwara, Error-Control Coding for Computer Systems, Prentice Hall:
Englewood Cliffs NJ, 1989.

[10] M. Schulze, G. Gibson, R. Katz, and D. Patterson, "How Reliable Is a RAID," COM-
PCON, San Francisco, pp. 118-123, February 1989.

[11] E. Schwabe and I. Sutherland, "Improved Parity-Declustered Layouts for Disk Arrays,"
ACM Symposium on Parallel Algorithms and Architectures, Cape May NJ, pp. 76-84,
June 1994.

5 Publications Supported

The following attached publications were supported by AFOSR F49620-94-1-0276.

1. J. Clark and D. Pradhan, "Fault injection: A method for validating computer-system
dependability," IEEE Computer, June 1995.

2. P. Krishna, B. Bakshi, N. Vaidya, and D. Pradhan, "Providing Seamless Communica-
tions in Mobile Wireless Networks," 1st International Conference on Mobile Computing
and Networking, November 1995.

3. F. Meyer, D. Pradhan, and N. Vaidya, "Performance and Reliability Assessment of
I/O Subsystems," J^th IEEE International Workshop on Evaluation Techniques for
Dependable Systems, October 1995.

4. D. Das Sharma and D. Pradhan, "Processor allocation in hypercube multicomputers:
Fast and efficient strategies for cubic and noncubic allocation," IEEE Transactions on
Parallel and Distributed Systems, October 1995.

5. D. Pradhan, H. Hecht, M. Hecht, F. Meyer, and N. Vaidya, "Cooperating Diverse
Experts: A Methodology to Develop Quality Software for Critical Decision Support
Systems," IEEE Aerospace Applications Conference, February 1995.

- • A Reconstruction with ORAID

I i: Let us define 5*,-, where i G [0, k — 1], as the syndrome for parity equation i. Syndrome Si
-: is equal to the linear combination of the elements of the z'-th row and the z'-th column—as

dictated by the parity equation—except that any erasures are not included. For example,
t- parity equation i is

0 = J2Dji + *-£DiJ

If the contents of Dhi are unreliable, then

| Si = E^i + ^Dij

,* = ££;, + *££>.; +A»
j j&

= Dhi

^, As seen above, Si = Dhi- So we may obtain the missing contents of Dhi by computing
'■•-'-'* syndrome Si. Similarly, if Dih contains unreliable data, with h ^ i, then

i St = Y,D>i + «EDa

= J^Dji + aJ^Dij + aDih

= aDih

'- , Again, we can obtain Avi, because D^ = a'1 Si. So ORAID tolerates any single disk
'.:-.- failure.

Looking more closely at the syndrome equation, we see that each syndrome, Si, is a
j linear combination of precisely the fault-free data from all disks of the form Dij and Dji.
® This leads immediately to the conclusion that a column failure is always tolerated. If a

single column—say DQJ, DIJ, ..., D^-i)j—becomes inaccessible, the data may always be
f| recovered. Specifically, for all i ^ j, D^ can be obtained from syndrome 5,-. After the data

on all the other disks in the failed column is known, then Djj (Pj) can be trivially recovered
as well.

This observation about Si also gives an immediate understanding of which double disk
failures might not be correctable. If D^ is one of the failed disks, then necessarily i ^ j.

:£ Otherwise, the other failed disk would have a unique subscript, its data could be recon-
[; structed, and we would then be left with the case of a single disk failure. So let i ^ j. Also,

the second failed disk must have its subscripts drawn from the set {i,j}- Likewise, it must
j use both indices, i and j, for the same reason. So reconstruction is assured unless the two

(üj failed disks are Dij and Dji, for some i and j. These disks are located as reflections of each
other across the diagonal of parity disks.

In that event, the syndromes we have are

St = Dji + aDij

Sj = Dij + aDji

10

From this we can derive

Da = (J + iy^Sj + aSi)

So we can effect reconstruction provided a2 + 1 has an inverse. In GF(4), GF(8), and so
forth, a2 + 1 ^ 0, so the data can be reconstructed. So the GF(4) and GF(8) ORAID disk
organizations tolerate all double disk failures.

In GF(2), however, a2 + 1 = 0—the two syndrome equations are linearly dependent. So,
in ORAID over GF(2), when two disks fail that are reflections of each other, data is lost.

The time required to reconstruct data after a failure affects reliability because it dictates
the length of time that the system is exposed to additional failures. We obtain reconstruction
times based upon the data bandwidths in the system. We use disk duplexing as a basis.
Figure 5 shows the information flow required to reconstruct a failed disk. The failed disk is
the top left one in the disk array. The figure shows the flow for two disk organization: disk
duplexing and single path horizontal.

m

ES?

2

<
1

1
\

2 2

i

1 \

1 1

0 0

0 0

0 0

master
controller k

-v \v

controllers 2 2 2 2

*
A / \ M

1 1 1 1

0 0 0 0

disks

0 0 0 0

0 0 0 0

disk duplexing single path horizontal

Figure 5: Load during reconstruction of single disk

The flow of information is assumed to be fully buffered. So in the left side of the figure
we see that the left controller (attached to the failed disk) experiences a load of '2'. Its
operations—obtaining the data from the master controller and forwarding the data to the
'failed' disk—are each counted. Buffering at each disk is ignored (this will not change between
disk organizations).

The right side of the figure depicts the information flow required to reconstruct the data
onto the top left disk of the disk array for the single path horizontal method. Here the master
controller (or central processor) endures a notably increased load. For our purposes, we will

11

n

ü

assume that disk duplexing is a balanced design. By balanced, we mean that the ratio of the
bandwidth demanded by reconstruction to the bandwidth available at the components is the
same for each component type. So we estimate the reconstruction time after a disk failure,
for the single path horizontal disk organization, to be max(fc/2,2/2,1/1) = k/2 times the
reconstruction time for disk duplexing. In other words, with the single path horizontal disk
organization, one can issue I/O requests for disk reconstruction at 2/k of the rate of disk
duplexing—this induces an equivalent load at the master controller.

In practice various other considerations will come into effect. Chief among these is that
the (non-reconstruction) I/O load has a pointed effect. But when comparing dramatically
different disk organizations, such as disk duplexing and single path horizontal, there is a wide
range of I/O load over which one (single path horizontal) is operational and the other (disk
duplexing) is saturated. Using more controllers (and, to a lesser extent, using more disks)
has a large impact on the I/O load that can be supported. So we regard the performance
requirement of the system orthogonally. The performance requirement may veto using some
disk organizations. Also, it is understood that the disk organizations using more controllers
will perform better under high I/O loads.

B Reliability Analysis

We now ascertain the reliability of various disk organizations. We use the customary combi-
natorial approximations [3, 6, 7], except that we have made some modifications to increase
accuracy. Xd and Ac are the rates of failure of disks and controllers, respectively, fid and
fic are the rates of repair of disks and controllers, respectively. fj.c does not reflect the time
needed to reconstruct out of date disks after a controller failure, because the time needed will
vary with the fault circumstances. N is the number of disks in the data space. jV = k[k — 1)
for the two-dimensional disk organizations.

The expressions given are for the rates at which data unavailability occurs. The mean
time to data unavailability for the I/O subsystem is equal to the reciprocal of the rate of
data unavailability. First we have the disk organizations supporting single-ported disks.
Disk duplexing

2NXd(Xd + Xc)/fid

+ 2AC(AC + N\d)/nc

+ 2Xc(Xe + Xd{N + l)/2)/(fid/N)

Here, (N + l)/2 arises, after a controller failure, from immunizing against each of JV disks
in turn.
Single path horizontal

k2Xd(k-l)(Xc + Xd)/((2/k)fid)

+ kXc(k-l)(Xc + kXd)/fxc

+ kXc{k - 1)(AC + Xd(k + l)/2)/{(2/k)(fid/k))

Here, the 2/k factors are due to the rate at which disks can be reconstructed. The bottleneck
that causes this is discussed in the previous section.

12

j*j . .. Modified EVENODD

p> fc(fc + l)XdkXd(l/(fid(2/k)))(k - 1)(AC + Xd/(2fid(l/k))

!v + fc(fc + l)Adfc(*r - l)Xd(l/fxd(2/k))(k - l)Xc/(2fid{2/k))

+ k{k + l)Xdk\c{lfßd(2/k)){k - l)(Ae + kXd/(N(l/k))

J + (fc + l)Acfc2A«»(l/^c)(fc - 1)(AC + kXd)/(fid(l/k))

+ (k + l)XckXc{l/fic)(k - 1)(AC + ÄrArf)/A*c

. + (* + l)AcfcAc(l//ic)(fc - 1)(AC + kXd)/{(fid/k){l/k))

■~ + (k + l)XcPXd(l/(fMd/k)(2/k))(k - 1)(AC + kXd)/(fid(l/k))

£ + (k + l)Xc(k - l)Xc(l/^d/k)(2/k))(k - 1)(AC + kXd)/((tid/(k/2))(2/k))

Again, the 2/k factors are due to reconstruction time. In the second term, in the factor
.-- (2/j,d(2/k)), the first '2' is due to disk reconstruction not being memoryless. So, after a disk
S-: failure, we first have a chance to reconstruct the disk—(l/(id(2/k))—then after another disk

failure we have a second chance to reconstruct the disk (and we assume that on average we
''/;,, were half way through the reconstruction).
!«;:'' The following are the dual-ported disk organizations.

P
Dual path RAID level 5

(N + l)XdNXd/(fid/((N + l)/4:))

+ 2X2Jfic

'■■-■'■ In the first term, for the reconstruction rate [id/{(N + l)/4), we have '4' instead of '2',
because we have dual controllers. We assume that we have RAID controllers, each controller

I .: accomplishes approximately half the reconstruction work, and (since the XOR operations
are done at the RAID controllers) the master controller does not experience any of the

,.» reconstruction load.
M Dual path RAID level 6

(N + 2)Xd(N + l)Ad(l/(/W((iV + l)/4)))iVAd(l/(2^/((iV + l)/4)))

1 + 2A2/^C

Again, we have '4' instead of '2' in (N + l)/4, for the same reason as with dual path RAID
level 5. Also, as we saw with the modified EVENODD disk organization, when we have a disk
failure followed by another failure, we are assumed to be half way through the reconstruction

£v; of that disk.
^3 The remaining dual-ported disk organizations follow.

Dual path horizontal

k2Xd(k-l)Xd/(fid(2/k))

+ k2Xd2{k - l)Xc(l/{(id(2/k)))(Xc + (k- l)\d)/{ixe + 2fid{2/k))

+ 2kX2
c(l/fic)k{k-l)Xd/fic

+ 2kX*c(l/[ic)(k - l)((k + l)/2)A,/((w/*)(2/*))

+ 2kXck(k - l)Ad(l//ic)(Ac + (k- l)\d)/{iic + fid{2/k))

13

V: . Crosshatch diagonal

M k2Xd(k - l)Xd/(fid(2/k))

'"' + PXd(k-l)Xc(l/(fid(2/k)))(2Xc + kXd)/(ßc + 2i,d(2/k))

+ 2kXckXc(l/fxc)(k-l)Xd/fic

K + 2kXckXc{l/l^c)(k - l)Xd/{fid{2/k))

+ 2kXck(k - l)Xd{l/(xc)(Xc + (k- l)Xd)/(fic + f*d{2/k))

■: Crosshatch ORAID over GF(8)

.*■ k(k-l)\l{l/A)(2k-l)(9k-6)/2

& + 72k2X2
cX

2
d(l/fic)(l/fic + (2k - l)/2(xd)(l/(k - IK + (2k - l)l2y.d)

+ Z2kXz
cXd(2k - 1)(1//XC)(1/A*C + {2k - l)/2//d)

2

£ + 4a*(2fc-l)(l//zc)(l//zc + l/2^)(l//ic + (2Ä:-l)/^)

For the Crosshatch ORAID over GF(8) disk organization, we have used GF(8) for simplicity
M and have broken down the failure rate into a single term for each component combination

(triple disk, double disk and double controller, etc.). Except for the first term, these terms '
ET? may be notably pessimistic, depending on the parameters.

C Reliability Comparison

The following plots show the mean time to data unavailability (mean time to failure, MTTF)
; ' for various disk organizations. The MTTF is calculated from the equations given in the

previous section. The default parameter values for component failures are Ac = A^ = 1 per
50,000 hours. Also, the standard reconstruction rate for disk duplexing is (id = 1 per hour.

f| The standard controller (data path) repair rate is /ic = 1 per 4 hours; this does not include
II the time to reconstruct disks that have become out of date. The default number of data

disks is N = 20 (it = 5).
Single-ported disks

Figure 6 shows the system MTTF for single-ported disk organizations as a function of
the controller reliability. The single path horizontal disk organization is not a factor. The
modified EVENODD disk organization is prevalent, except when controller reliability is quite
low. With low controller reliability, the added complications of EVENODD might not be
justifiable—unless the additional controller bandwidth is desired for performance reasons
anyway.

Figure 7 shows the system MTTF for single-ported disk organizations as a function of
the disk reconstruction time (for disk duplexing). The disk reconstruction time depends
upon (among other factors) the speed and size of the disks. Faster, smaller disks favor the
modified EVENODD disk organization.

Figure 8 shows the system MTTF for single-ported disk organizations as a function of
the number of disks in the data space. Disk duplexing scales the best to large numbers of
disks. So, for systems requiring a large number of disks and not needing the performance
of the modified EVENODD disk organization, the simplicity of disk duplexing stands out.

m

FT;

14

FT.

10'

10

10c

U- 7
t=107

>.10

10=

10'

10°

: X
.^1

o ^^
o ^-^

o ^-"^
o ^^

o ^-^

-

iO s^
 Disk duplexing

 Single path horizontal

o Modified EVENODD
i

, t

10° 10 10
Controller MTTF

10"

Figure 6: Longevity versus controller reliability (single-ported disks)

10'

m

10
10

 Disk duplexing

 Single path horizontal

o Modified EVENODD

10"
Disk MTTReconstruction

10'

Figure 7: Longevity versus reconstruction time (single-ported disks)

15

This does, however, require that disk duplexing's two controllers support many disks (cf. for
modified EVENODD, the high end of the plot is with 14 disks per controller).

10'

10

10

E10
CD

V> >.
CO

10°

10*

10

x *

X

* Disk duplexing

x Single path horizontal

o Modified EVENODD

o
Ö

0 20 40 60 80 100 120 140 160 180 200
Data Disks

m
m

Figure 8: Longevity scalability (single-ported disks)

Greater performance can be gained using disk duplexing by increasing the number of
controllers (e.g., by having 6 controllers implement 3 replicates of disk duplexing, each with
a iV/3-disk data space). This has the effect, though, of increasing system failures due to
multiple controller failures. We did not investigate this.
Dual-ported disks

Figure 9 shows the system MTTF for dual-ported disk organizations as a function of
the controller reliability. A surprise is that the Crosshatch diagonal disk organization [7] is
not distinguishing itself from the dual path horizontal disk organization [10]. We see the
beginnings of a separation when controllers are very unreliable, which is the domain assumed
in [7].

We also note that dual path RAID Level 6 does not stand out until controllers (data
paths) are reasonably reliable. The asymptotic (in controller MTTF) reliability of dual path
RAID Level 6 is notably below that of Crosshatch ORAID over GF(8), because ORAID tol-
erates nearly all triple disk failures. The knee for ORAID also arrives at a (lower) reasonable
controller reliability.

Figure 10 shows the system MTTF for dual-ported disk organizations as a function of the
disk reconstruction time (for disk duplexing). This plot has no surprises; it merely confirms
the superiority of Crosshatch ORAID, regardless of disk size and speed.

Figure 11 shows the system MTTF for dual-ported disk organizations as a function of
the number of disks in the data space. Again, this plot brings no surprises. It does make

16

i

10'

10"

10'

E10
<D

10'

10°

10

+++++++++++++++++++++++++++++++;■

 Dual RAID 5

 DualRAID6

■ö'' Dual horizontal

 Xhatch diagonal

+ Xhatch OR AID

.-A-O'^00

10 10' 10*
Controller MTTF

10

£r*i

Figure 9: Longevity versus controller reliability (dual-ported disks)

10

10'

10'

10'

E109

w

 Dual RAID 5

 Dual RAID 6

o Dual horizontal

 Xhatch diagonal

+ Xhatch ORAID

10 (^eo^
5°o&,

°öOG.

Disk MTTReconstruction

Figure 10: Longevity versus reconstruction time (dual-ported disks)

17

clear, however, that dual path RAID Level 6 does not scale well. For the same data space
size, using fewer (larger) disks is encouraged.

t;

10'

10'

10'

10'

|10°

E
<D 7

£10

10°

10a

10 -

10

1 I i i i , r 1 1

: + * Dual RAID 5

- + X Dual RAID 6
+ 0 Dual horizontal

+
+

+
+

+ +

Xhatch diagonal '

Xhatch ORAID
r + + -

+ +
: xx x
- © X -
• * ® X •

a -
* Q

©

X

X
i

- * a
© 3

-
*

*
©
X ©

X
S ® -

: * X
; *

* X

i r i i

* *
'

0 20 40 60 80 100 120 140 160 180 200
Data Disks

■ *

Figure 11: Longevity scalability (dual-ported disks)

18

m

II. Research in Fault Injection

m

®ä

±: ;

19

Fault Injection
A METHOD FOR VALIDATING

COMPUTER-SYSTEM DEPENDABILITY

Jeffrey A. Clark
Mitre Corporation*

Dhiraj K. Pradhan
Texas AScM University

m

**

Fault injection is an effective

solution to the problem of

validating highly reliable

computer systems. Tools such

as React are facilitating its

application.

With greater reliance on computers in a variety of applications,
the consequences of failure and downtime have become
more severe. In critical applications, such as aircraft flight

control, nuclear reactor monitoring, medical life support, business trans-
action processing, and telecommunications switching, computing
resource failures can cost lives and/or money.

Computers employed in such applications often incorporate redun-
dancy to tolerate faults that would otherwise cause system failure. A fault-
tolerant computer system's dependability must be validated to ensure that
its redundancy has been correctly implemented and the system will pro-
vide the desired level of reliable service. Fault injection—the deliberate
insertion of faults into an operational system to determine its response—
offers an effective solution to this problem. In this article, we survey sev-
eral fault-injection studies and discuss tools such as React (Reliable
Architecture Characterization Tool) that facilitate its application.

COMPUTER-SYSTEM DEPENDABILITY
Dependability is a qualitative system attribute that is quantified through

specific measures. The two primary measures of dependability are relia-
bility and availability. Reliability is the probability of surviving (without
failure) over an interval of time. Availability is the probability of being oper-
ational (not failed) at a given instant in time. The mean time to failure
(MTTF) and the mean time between failures (MTBF) are also frequently
used. Dependability is often evaluated empirically through life testing.
However, the time needed to obtain a statistically significant number of
failures makes life testing impractical for most fault-tolerant computers.
Instead, analytical modeling is typically used to predict dependability.

Analytical dependability models enumerate a system's operational or
failed states. Each state represents a unique combination of faults and
their effects on system components. The times at which the faults occur
are assumed to fit a particular statistical distribution. Several standard-
ized procedures estimate the failure rates of electronic components when
the underlying distribution is exponential. However, fault handling
beyond this stage has been modeled in many different ways.

Most fault-handling models use coverage parameters to specify the
probability of successfully performing the actions needed to recover from
a fault. These actions include detecting the fault, identifying the affected
component, and isolating that component through system reconfigura-
tion. Each action must be taken quickly, before any additional faults that
can overload the system's fault-handling mechanisms accumulate. For
this reason, many models incorporate distributions of latency—the time
needed to perform each of these actions. Because even small variations in
coverage and latency can greatly affect dependability, these parameters
should be estimated based on data from the actual system rather than
approximated (see "Background" sidebar).

Fault-injection studies can provide this data through many individual
experiments that vary how, where, and when the faults are intentionally

* The views, opinions, and/orfindings in this article are those of the authors, and should
not be construed as the official positions, policies, and/or decisions of the Mitre Corporation
or its government sponsors.

0018-9162/95/S4.00 C 1995 IEEE June 1995

rife
70

&
fc

m

'.;>.*

inserted. Large complex systems and time constraints make
exhaustive insertion impractical; therefore, only a care-
fully chosen subset of all possible faults can usually be
investigated. Insertion must be controlled so that the type,
location, time, and duration of each fault, or the corre-
sponding statistical distributions, are at least approxi-
mately known. Faults can be inserted into both the
hardware and software components of a realized system
or a simulation model that accurately reflects these com-
ponents' behavior. During each experiment, the system
must be operated with a representative work load to obtain
a realistic response. The effects of each inserted fault are
precisely monitored and recorded with instrumentation.

Besides supplying coverage and latency parameters for
analytical models, fault injection can directly evaluate
dependability metrics. It is particularly useful for mea-
suring those system attributes that are difficult to model
analytically—for example, the work load's influence on
dependability. Fault injection aids design when it is used
to functionally test a prototype during system develop-

ment. It can identify implementation errors in fault-
tolerance mechanisms and provide feedback on those
mechanisms' efficiency. When the system is ready for
deployment, fault injection can be used to observe the
error or failure symptoms associated with each type of
faulty component. Fault dictionaries can then be compiled
to support system diagnosis during maintenance actions.
Finally, fault-injection experiments provide a means for
understanding how computer systems behave in the pres-
ence of faults. Such knowledge will ultimately lead to bet-
ter system designs and higher dependability.

TAXONOMY OF EXPERIMENTS
Fault-injection experiments can be classified according

to three general attributes: system abstraction, fault model
and injection method, and dependability measure.

System abstractions
Fault-injection studies have traditionally been per-

formed on the actual hardware and software of physical

EacEcgrcuncS

Afault is a deviation in a hardware or software component
from its intended function. Faults can arise during all stages in
a computer system's evolution—specification, design, devel-
opment, manufacturing, assembly, and installation—and
throughout its operational life. Most faults that occur before
full system deployment are discovered through testing and
eliminated. Faults that are not removed can reduce a system's
dependability when it is in the field. Despite the potential for
such latent faults in computer systems, most fault-injection
studies focus on the faults that occur during system operation.

Hardware faults occurring during system operation are cat-
egorized mainly by duration. Permanent faults are caused by
irreversible device failures within a component due to dam-
age, fatigue, or improper manufacturing. Once a permanent
fault has occurred, the faulty component can be restored only
by replacement or, if possible, repair. Transient faults, on the
other hand, are triggered by environmental disturbances such
as voltage fluctuations, electromagnetic interference, or radia-
tion. These events typically have a short duration, returning the
affected circuitry to a normal operating state without causing
any lasting damage (although the system state may continue to
be erroneous). Transients can be up to 100 times more frequent
than permanents, depending on the system's particular oper-
ating environment. Intermittent faults, which tend to oscillate
between periods of erroneous activity and dormancy, may also
surface during system operation. They are often attributed to
design errors that result in marginal or unstable hardware.

Software faults are caused by the incorrect specification,
design, or coding of a program. Although software does not
physically "break" after being installed in a computer system,
latent faults or bugs in the code can surface during operation—
especially under heavy or unusual work loads—and eventually
lead to system failures. For this reason, software fault injec-
tion is employed primarily for testing programs or software-
implemented fault-tolerance mechanisms. However, it has not
seen widespread use in either application.

When a fault causes an incorrect change in machine state, an

Computer

Fault Error

Fault
latency

Detection
of error

—►*-
Error

latency
Latency of

fault-tolerance
mechanisms

Recovery
or failure
-+-•

s-a-0 Write Read s-a-0 Proper
fault value 1 value service

occurs in into bit instead continues
bit with with s-a-0 of the or is
value 0 fault correct disrupted

value 1
s-a-0 Stuck at 0

Figure A. Example of a fault an error, and a failure.

error occurs. The time between fault occurrence and the first
appearance of an error is called the fault latency. Although a fault
remains localized in the affected code or circuitry, multiple errors
can originate from one fault site and propagate throughout the
system. If the necessary mechanisms are present, they will detect
a propagating error after a period of time, called the error latency.
When the fault-tolerance mechanisms detect an error, they may
initiate several actions to handle the fault and contain its errors.
Jtecovery occurs if these actions are successful; otherwise, the sys-
tem eventually malfunctions and afailure occurs.

Figure A provides an example to clarify the definitions of fault,
error, and failure. Suppose a permanent stuck-at-0 (s-a-0) fault
affects a memory bit with an initial value of logical 0. Some time
later, an error occurs when a logical 1 is written into this bit (If
the faulty value had been opposite the initial value of this bit, an
error would have manifested immediatelywith no fault latency.)
The next read from the memory bit obtains the s-a-0 value
instead of the correct value, 1, thereby detecting an error. Proper
service continues if the system's fault-tolerance mechanisms can
correct or mask this bit error. If not, service is disrupted.

21

r

r

computer systems. High levels of device integration,
mültiple-chip hybrid circuits, and dense packaging tech-
nologies limit accessibility to injection and instrumenta-

-, don nodes. This makes it difficult to validate the hardware
of physical systems. Simulation, on the other hand, has
the advantage of relatively uninhibited access to a mod-
eled system's internal nodes. The ability to precisely con-
trol and monitor injected faults, coupled with low-cost
computer automation, and the potential for earlier appli-
cation make simulated injection an attractive alternative
to physical injection.

Simulated fault injection can support all system abstrac-
tion levels—architectural, functional, logical, and electri-
cal. Mixed-mode simulation, where the system is
hierarchically decomposed for simulation at different
abstraction levels, is particularly useful for fault injection.
This technique lets faults be accurately simulated at a low
abstraction-level, while the system responses are efficiently
simulated at higher abstraction levels.

Fault models and injection methods
Simulated fault injection and most experiments involv-

ing physical hardware and software require selection of a
fault model. The popular stuck-at fault model is commonly
used for permanent hardware faults. However, subsequent
errors often are of more concern than the faults them-
selves. This is particularly true for transient faults, whose
unpredictable origin and relatively short life span make
them difficult to characterize. Therefore, studies involv-
ing transients frequently employ an inversion model,
where a fault immediately produces an error with the
opposite logical value. Software errors arising from hard-
ware faults are often modeled via bytes of Os or Is written
into a data structure or portion of memory. Experimenters
can use various other models, from detailed device-level
to simplified functional-level models, to represent faults
or their manifestations.

After choosing a fault model, the experimenter must
determine how to inject the faults into the computer sys-
tem. Locations frequently exploited when faults are
injected into physical systems include IC leads, circuit
board connectors, and the system back plane. The exper-
imenter can generate faults at these external sites by tem-
porarily inserting circuitry that corrupts the signals
passing through a node without damaging any system
components. Although signal corruption can model many
faults that occur inside components, this method usually
does not exercise all relevant hardware in the system.
Therefore, experimenters cannot investigate the effects of
some internal faults with this injection technique.

State mutation is one method of injecting errors inside
system components. During normal system operation,
processing is halted and special-purpose hardware orsoft-
ware is used to introduce errors. Scan paths, designed for
system test and diagnosis, can be used to read the shift-
register contents, modify selected bits, and shift the
mutated state back into the machine. Privileged system
calls and program debuggers can insert errors into a com-
puter system by directly modifying its memory or register
state. State mutation is the injection method used most
often with simulated fault injection. Computer simulators
are typically event driven, updating a modeled system's

state at discrete times rather than continuously. Fault
injections are easily made between event time boundaries.
However, because it requires stopping and restarting the
processor to inject a fault, this technique is not always
effective for measuring latencies in physical systems.

Several novel approaches exist for injecting internal
faults in hardware. ICs are susceptible to single-event
upsets (SEUs)—created when an ionizing particle passes
through a transistor, generating excess charge. Computer
systems in space applications are particularly vulnerable
to SEUs from cosmic rays. In the laboratory, transient faults
can be induced in a similar way through short-term expo-
sure to heavy-ion radiation. However, these fault-injection
experiments must be performed in a vacuum chamber with
the lid of the target IC removed, since ions are easily atten-
uated by air. Radiation flux is distributed uniformly over
the chip, and error rates can be adjusted by a change in the
distance from the ion source. Shielding can confine faults
to a particular region of the IC, but there is no dire« con-
trol over where and when the injections occur.

Another means for injecting internal hardware faults is
through power supply disturbances. Short, pulsed inter-
ruptions in power drop the supply voltage to levels that
can increase propagation delays and discharge nodes,
especially those in memory. Computersystems employed
in industrial applications are often subject to similar noise
on the power lines. Unlike radiation, which causes SEUs,
power supply disturbances simultaneously affect many
nodes in the target IC, producing multiple, transient bit
faults. Unfortunately, the location of these faults cannot
be readily controlled. This injection technique is quite sen-
sitive to the pulse width and amplitude of the voltage dis-
turbances. Effects can also vary widely with different
circuit families and fabrication technologies, making it dif-
ficult to generalize results from such experiments.

The last method we consider for introducing faults into
a computer system is called trace injection. This method
first uses custom-monitoring hardware or software to peri-
odically sample machine state or record memory references
on an operational system. Then the acquired trace is used
to simulate system behavior, as errors that mimic faults in
the instrumented components are inserted into the trace.
The quantity of data collected can be very large, limiting
most traces to only a brief history of machine activity. It is
therefore essential to associate some measure of system
load (at the time the trace was obtained) with the results,
to distinguish extremes in fault behavior from the norm.

Dependability measures
The traditional objective of fault-injection experimen-

tation has been to estimate coverage and latency parame-
ters for analytical dependability models. However, fault
injection can also evaluate other dependability measures,
including reliability or availability and MTTF or MTBF.
Several failure classification experiments have analyzed
how injected faults affect a computer system's service.
Fault-injection studies have also investigated error prop-
agation from a fault site to other system components.
Finally, researchers have often observed a correlation
between a system's dependability and either its computa-
tional load or characteristics of its application code. Such
work load relationships are frequently explored via fault

June 1995

22

Cv

injection. Figure 1 summarizes the system abstractions,
injection methods, and dependability measures for clas-
sifying fault-injection experiments.

APPLICATIONS
Fault injection was first employed in the 1970s to assess

the dependability of fault-tolerant computers. For some
time afterward, fault injection was used almost exclusively
by industry for measuring the coverage and latency para-
meters of highly reliable systems. Not until the mid-1980s
did academia begin actively using fault injection to con-
duct experimental research. Initial work concentrated on
understanding error propagation and analyzing the effi-
ciency of new fault-detection mechanisms. Research has
since expanded to include characterization of depend-
ability at the system level and its relationship to work load.

Error propagation in a jet-engine controller
We first examine a study that explored error prop-

agation in an HS 1602 jet-engine controller with dual-
channel redundancy. Choi and Iyer used the Focus simu-
lation environment to inject transient faults into one of

Table 1. Transient fault severity.

Type Percentage

First-order latch errors 22.4
Second- and higher-order latch errors 5.7
First-order pin errors 2.1
Second and higher-order pin errors 4.3
Functional errors 9.2

mi

Si

Table 2. Bus affected in the first erroneous cycle.

Bus affected

Heavy-ion
radiation
(percent)

Power supply
disturbances
(percent)

Address
Data
Control
Combination

64
5

27
4

17
1

80
2

!'■:•'.

System abstractions

Physical Logical
Architectural Electrical
Functional Mixed-mode

Injection methods Dependability measures
Signal corruption Reliability/availability
State mutation MTTF/MTBF
Radiation Failure classification
Power supply Coverage and latency
disturbances Error propagation

Trace injection Work load relationships

the two microprocessors in this controller.1 They used
mixed-mode simulation at the electrical and logical lev-
els to deposit 0.5 to 9 pico-coulombs of excess charge onto
different nodes of the microprocessor as it executed a
phase of its application code. The excess charge models
transients from the penetration of various heavy ions typ-
ically found in cosmic environments. The data in Table 1
is from a comparison of 2,100 simulated fault-injection
experiments with a trace of the fault-free simulation. First-
order errors are those manifested in the first clock cycle
after fault injection. Errors manifested in the second and
subsequent clock cycles are called second- and higher-
order errors, respectively. Results indicate that nearly 80
percent of the injected transients had no impact, since
errors had to be latched (stored in a memory element) to
affect the microprocessor's state. Once latched, however,
an error had more than a 50 percent chance of reaching a
pin and more than a 40 percent chance of causing a func-
tional error on the microprocessor's control outputs. By
analyzing the individual contributions to these statistics
by each of the HS 1602's six functional units, Choi and Iyer
discovered the most effective locations for incorporating
additional fault-tolerant features.

Radiation and power supply disturbances
Karlsson et al. used radiation and power supply distur-

bances to investigate the propagation of internal errors to
the bus of an MC6809E.2They injected transient faults into
this microprocessor by exposing it to heavy ions from a
Californium source and to - 4.2 V, 50-ns pulses on the
microprocessor's 5V power supply. A reference MC6809E
ran the same two test programs in lock-step synchroniza-
tion with the microprocessor under test. Comparison of bus
signals from the two microprocessors detected errors.
Detection triggered a logic analyzer to record micro-
processor activity for 200 bus cycles. Table 2 lists the bus
affected in the first erroneous cycle based on 1,000 obser-
vations. Errors appeared mainly on the address bus in the
radiation experiments, whereas errors on the control bus
dominated the power-supply disturbances. Although the
initial fault manifestations were quite different, the micro-
processor's behavior over an extended period of time was
almost identical for both injection techniques. As Table 3
shows, control-flow errors causing permanent divergence

«i *-* c
0) u
i-
0>
Q. ^^
3 a. u

1 -'Vff^^?>i?^*Vi^W^^^^^^^
.-■/'<&>iS':\s.>; /.a,^-3i^:;;v.,:-'>j|''>i.;jA;a:|i?^SSir-

5 10 15 20
Time of day (hours)

25

Figure 1. Summary of the experimental taxonomy. Figure 2. User CPU usage by time of day.

Computer

23

1

B

from the correct instruction stream were responsible for
over 70 percent of the failures observed with heavy-ion
radiation and power-supply disturbances. Karlsson et al.
have evaluated the coverage and latency of several different
concurrent error-detection schemes using these methods.

Trace injection to measure latency
Chillarege and Iyer were among the first to measure

fault and error latency in memory via trace injection.3 They
ran a scanning process on a VAX 11/780 to periodically
copy the contents of real memory locations into archival
storage. The locations were randomly chosen from 4 to 10
regions in memory of up to SO Kbytes each. These regions
were repetitively scanned every 15 to 20 seconds under a
medium to high system work load. Stuck-at bit faults were
then simulated in the sampled words to calculate latency
distribution parameters (given in Table 4) for a represen-
tative set of 960 faults. The mean fault latency was almost
five times greater for s-a-0 (stuck-at-0) than fors-a-1 faults.
Conversely, the mean error latency of the s-a-1 faults was
more than double that of the s-a-0 faults. Chillarege and
Iyer attributed the difference in latencies to unequal life-
times of 0s and Is in the system due to the way memory is
allocated and released. They conjectured that many pro-
grams use only a fraction of their allocated memory
blocks. This would leave many 0s in memory, because
blocks are initially cleared when they are allocated.
Optimal memory scrubbing rates—the frequency at which
single, transient bit errors are systematically corrected
before any additional errors accumulate—are determined
from such measurements of fault and error latency.

System work load and memory error latency
Chillarege and Iyer also used trace injection to analyze

the relationship between system work load and memory
error latency.4 They collected data by probing the back
plane of a VAX 11/780 and sampling physical memory
activity at 40-second intervals. They also logged work load
profiles during this data acquisition. Figure 2 graphs one
measure of system work load, user CPU utilization (per-
centage of processing capacity in use), over a 24-hour
period beginning at midnight. Work load was relatively
low until shortly after 7 a.m. (except for a brief period
around 1 a.m., when system routines were run), then rose

significantly between 8 and 10 a.m., and peaked in the
mid- to late-afternoon. Chillarege and Iyer used the mem-
ory activity data to simulate inverted bit errors occurring
at different times of day. Error latency distributions for
faults inserted at midnight and noon appear in Figures 3
and 4, respectively. Mean error latency varied from as long
as eight hours at low work load to as short as 44 minutes

Table 3. Classification of processor errors.

Error class

Heavy-ion
radiation
(percent)

Power supply
disturbances
(percent)

Control-flow errors

Permanent divergence 72

Temporary divergence 3

Not active within 200 cycles 2

Data errors

Data only 5

Address/control also affected 15

Other errors

Could cause failure 4

Could not cause failure 0

74

4

0

2
16

2

3

Table 4. Memory latency distribution parameters. All latencies
are in minutes.

Stuck at 0

Latency Mean
Standard
deviation

Stuck at 1
Standard

Mean deviation

Fault

Error

Total

70.4

20.6

91.1

80.2

31.2

76.9

14.6

45.4
60.4

31.9

47.9

47.6

Figure 3. Error latency distribution for a "fault at
midnight.

Figure 4. Error latency distribution for a fault at
noon.

June 1995

24

Table 5. Completion category distributions.

Completion
category

Matrix
multiplication

(percent)

Recursive Fibonacci
computation

(percent)

Overwritten

Fatal errors

Time-outs

Results wrong

Results OK

64

17

7

8

4

71

8

7

8

6

m

-Time-out

Fatal
 ^_^Abnormal ("error

f f f completion^
Minor Monitoring Severe
error error error ReS(j|ts

. K> V ^ Normal ("wrong
[completion"[Results

-► Overwritten OK

Figure 5. Fault manifestation and error propagation.

at high work load. Notice that a fault occurring at mid-
night was likely to remain dormant until the sharp increase
in work load beginning at 8 a.m., whereas a fault at noon
had a high probability of being detected quickly. This
clearly demonstrated that error latency strongly depends
on the work load following the fault's occurrence.

Impacts of faults on program behavior
Czeck and Siewiorek employed simulated fault injec-

tion to study the effects of gate-level faults on program
behavior in the IBM RT PC.5 They exhaustively injected
one-cycle inversion faults into 10 key CPU locations across

Fault

overwrite

Figure 6. State transitions under failure acceleration. All faults produce errors. 16
percent cause failure quickly, and 33 percent cause a partial failure—with 19
percent being partial failures that are failure-prevention or error-repair candidates.
For 51 percent of faults, nothing happens—with 10 percent being overwritten and
41 percent remaining as potential hazards or "not determined." 60 percent of all
faults are failure-prevention or error-repair candidates.

Computer

the entire execution time of a matrix multiplication and a
recursive Fibonacci program. They incorporated several
different error-detection mechanisms (EDMs) into this
processor's simulation model. Figure 5 illustrates possible
fault manifestations and error propagation to the EDMs.
An injected fault initially caused a minor error. If the minor
error later propagated to and was detected by an EDM, it
became a monitoring error. A severe error occurred when
a monitoring error disrupted control flow. The program
would then either complete with correct or incorrect
results or terminate through a time-out or fatal error. Table
5 reports the outcomes for both work loads. Of the 18,900
transients injected, 60 to 70 percent were inserted into
idle hardware in the processor and eventually overwrit-
ten. Of those faults that were not overwritten, approxi-
mately 30 to 40 percent lead to normal program
completion, while over 60 percent produced severe errors.
Czeck and Siewiorek later developed a model predicting
faulty system behavior from work load attributes such as
instruction type, control flow structure, and instruction
mix, based on these experimental results.

Failure acceleration
Chillarege and Bowen introduced the concept of failure

acceleration to increase the speed at which a system tran-
sitions between the good, erroneous, and failed states dur-
ing fault-injection experiments.6 They accomplished this
by decreasing fault and error latency and increasing the
probability of a fault causing a failure, without altering
the fault model. The idea was utilized in a study involving
70 experimental runs that filled a random page of real stor-
age in an IBM 3081 mainframe with bytes of hexadecimal
FF. This faulty bit pattern emulates the effects of a soft-
ware overlay, which arises when a program writes into an
incorrect storage area. During the experiment, the system
executed simulated on-line database transactions that
kept CPU utilization between 85 and 90 percent. The
resulting state transition diagram (depicted in Fig-

ure 6) indicates that only
16 percent of the injected
faults caused the system to
quickly crash. One third of
the observations were clas-
sified as partial failures,
representing some loss in
service without any adverse
effect on the primary appli-
cation. In 51 percent of the
experimental runs, nothing
happened within 15 min-
utes of the fault injection.
Roughly half of these re-
sponses were later identi-
fied as potential hazards, or
errors that had caused sig-
nificant damage to the sys-
tem but—under the pre-
vailing operating state—
would remain dormant.
There was adequate time
to repair 60 percent of the
errors that did not affect

mummst-.
Potential hazards g^aajj^centg

41 .£, Not determined j|$9TOrcent?

percent MiK^^^I^TjIÄ^SjSSjiSsä^^^?

60 percent failure-prevention
and error-repair candidates

25

T

!•'■■•■,

«as*

•*-i
Ü5

f

(a)

the short-term availability of the system.
- Chillarege and Bowen discussed failure

prevention and error repair techniques to
detect and remove these errors and avert
the loss of primary service.

Transient errors impact
availability

Goswami and Iyer explored the impact
of latent and correlated transient errors on
a commercial fault-tolerant system's avail-
ability.7 The target for this study was the
triple-modular redundant (TMR) process-
ing core of the Tandem Integrity S2.
Processor modules are triplicated in this
machine, and a majority voter masks erro-
neous outputs from any one processor.
Goswami and Iyer used the Depend tool to
inject transients into a functional-level sim-
ulation of the system's CPUs and memories. They simu-
lated system operation 10 to 60 times, over periods of up
to 200 years, to obtain statistically significant MTBF esti-
mates. They considered three different error arrival rates
(Xi = 1/24 hours, \ = 1/72 hours, and X^, = 1/120 hours)
and latencies, based on the analysis of real error data col-
lected from other systems. The results graphed in Figure
7 show that latent transients alone did not adversely affect
the system's MTBF. However, when 85 percent of the
injected errors were correlated by even a small percent-
age, the degradation in MTBF was enormous. To sustain
a high MTBF in the presence of latent errors, Goswami and
Iyer suggested frequent memory scrubbing and reducing
the time required for a CPU power-on self-test. In other
experiments, they measured the coverage and latency of
two memory-scrubbing schemes running under a simu-
lated application program.

Evaluating proposed designs
The studies discussed so far focused on validating exist-

ing systems, but fault injection can also evaluate the
dependability of proposed designs. We have used simulated
fault injection to analyze the reliability of several alterna-
tive TMR architectures.8 Bidirectional voting (BDV) on both
memory read and write accesses is typically performed in
TMR systems. We proposed read-only voting (ROV) and
write-only voting (WOV) to reduce the voting performance
penalty through a small sacrifice in reliability. We used the
React (Reliable Architecture Character-ization Tool) fault-
injection testbed to empirically compare these three differ-
ent designs. React simulated each TMR system's processors,
memories, and voter at the functional level. The processors
executed a synthetic work load, while permanent and tran-
sient faults were injected into the system components at
exponentially distributed interarrival times. Figure 8 shows
the reliability/performance tradeoff obtained via unidi-
rectional voting. One million TMR systems of each type
were simulated over a 100-hour mission to generate these
plots. For equal processor and memory module failure rates
(Xp and X„, respectively) in the upper plot, the reliability
was significantly higher for BDV than for either the ROV
or WOV architecture. However, when the memory failure
rate was 10 times greater than the processor failure rate,

01

0.5 1 1.5 2 2.5
Error latency (hours) (b)

0.5 1 1.5
Percent correlation

Figure 7. Effect of latent and correlated errors on MTBF (mean
time between failures): (a) uncorrelated latent errors; (b)
correlated latent errors.

the difference between the reliability curves shrank in the
lower plot. Our results indicate that in many cases, the
unidirectional-voting TMR systems give up a little reliabil-
ity for a potentially large increase in performance.

1.0000

0.9998

0.9996

S 0.9994

0.9992

0.9990

Xp=10"sandX.M=10"5

'■<~t,&~ffi'S&?<j!??£?-
20

(a)

40 60
Time (hours)

- Bidirectional voting
- Read-only voting
■ Write-only voting

80 100

1.000

0.998

= 0.996

<u 0.994

0.992

0.990

(b)

40 60
Time (hours)

100

Figure 8. Reliability trade-off of the alternative
triple-modular redundant (TMR) designs: (a) equal
processor and memory module failure rates (X = X«
= 10-' failures/hour); (b) memory module failure rate
greater than processor module failure rate.

June 1995

m

P
Läse*

E:!

FAULT-IIUJECTIOW TOOLS
Most fault-injection experiments were not designed

around a formalized methodology. Experimenters typi-
cally developed customized approaches to validate each
new system. This makes it difficult to apply specific results
from different studies when analyzing other systems.
Moreover, the complexity of today's systems can make the
fault space (defined as fault type x location x injection
rime) huge. This means many experiments must be per-
formed to achieve statistical confidence in the depend-
ability metric being measured. To obtain the most accurate
results in the shortest time, we must accelerate the injec-
tion and measurement processes. Fault-injection tools
address these problems by integrating models, methods,
and measurements into a generalized framework for con-
ducting automated experiments on a variety of systems.

Messaline
Various fault-injection tools can evaluate physical sys-

tems, but few offer the versatility of Messaline, which was
developed by LAAS-CNRS (Laboratory for the Analysis of
System Architectures at the National Center for Scientific
Research), France.9 Its design is based on a formalized fault-
injection methodology. The result is a flexible testbed capa-
ble of simultaneously injecting multiple, pin-level faults into
different target systems to collect coverage, latency, and
error-propagation measurements. A host computer man-
ages fault injection by generating the test sequence, pro-
viding runtime execution control, and archiving data for
analysis. Messaline has validated a centralized computer
interlocking system for railway control and the distributed
communication system of the Esprit Delta-4 project.

Fiat
The Fault-Injection-Based Automated Testing environ-

ment combines the flexibility of software control with
hardware emulation, to evaluate the dependability of
fault-tolerant distributed systems.10 Fiat uses software-
implemented fault injection to (erroneously) set and clear
bytes in the memory images of programs. The programs
execute on a network of machines configured to model a
particular system architecture. This tool was realized with
four IBM RT PCs connected via a token ring at Carnegie
Mellon University. Fiat has been used to measure cover-
age and latency, classify failures, and investigate the effects
of fault type and work load on these metrics.

Ferrari
The Fault and Error Automatic Real-Time Injector was

designed at the University of Texas to estimate the cover-
age and latency of fault-tolerance mechanisms." Like Fiat,
it uses software-implemented injection to emulate hard-
ware faults. However, instead of injecting errors directly
into memory, Ferrari traps instructions affected by the
fault so that a routine can be executed to mimic system
behavior in the presence of the real fault. Various perma-
nent and transient hardware faults, program control-flow
errors, and user-defined faults/errors can be injected.
Running on a Sun SparcStation under X Windows, Ferrari
has evaluated the effectiveness of several concurrent error-
detection techniques embedded in application software.

Focus
The Focus simulation environment conducts fault sen-

sitivity experiments on chip-level designs.1 Transient faults
are injected through a runtime.modification of the circuit,
whereby a time-dependent current source is added to a
device-level node. The current source deposits excess
charge on this node to represent the penetration of an
alpha particle or other electrical disturbance. The soft-
ware provides various statistical measures to quantify fault
sensitivity, including charge thresholds, error distribu-
tions, and two state-transition models that describe error
generation and propagation. Focus uses a graphical analy-
sis facility for Sun workstations, letting it visualize fault
activity in a chip's functional units and error propagation
on the major interconnects to external pins. Focus was
developed at the University of Illinois and was used to ana-
lyze a dual-channel jet-engine controller.

Depend
The Depend environment is a joint dependability and

performability evaluation tool that analyzes fault-
tolerant architectures at the system level.7 This process-
based simulator provides a library of objects to behav-
iorally model a system's hardware components. Using
these objects, a control program written in C+ + simulates
system operation and models system software. The objects
automatically inject faults, initiate repairs, and compile

statistics—such as the num-
ber of failures per compo-
nent and the component's

React is a MTBF—that can be graphi-
software cally displayed or included

testbed that in a report. Permanent,
abstracts transient, and user-defined
multiprocessor faults can be injected with
systems at latency or at correlated
the architectural times. A fault-injection
level. scheme based on work load

is also available. Depend
was developed at the Uni-

versity of Illinois and has been used to analyze the Tandem
Integrity S2 commercial fault-tolerant processor and a
load-sharing distributed system.

React
In a cooperative effort between the University of

Massachusetts and Texas A&M, our group has produced
the Reliable Architecture Characterization Tool.12 React is
a software testbed that abstracts multiprocessor systems
at the architectural level. It performs life testing through
simulated fault injection to measure dependability. This
involves conducting a statistically significant number of
experiments or trials, each simulating the operation of an
initially fault-free system. Randomly occurring faults are
injected into each system until it fails or reaches a specified
censoring time. Failure statistics are collected during each
trial and are later aggregated over the entire simulation
run to compute dependability metrics.

We have incorporated detailed system, work load, and
fault/error models into the React software. Figure 9
depicts the system model employed by React. This class of
architectures contains one or more processor modules (P)

Computer

27

I':--

is©

M

': I

interconnected via buses (B) to one or more memory mod-
ules (M) through a block of fault-tolerance mechanisms.
The fault-tolerance mechanisms supply the hardware nec-
essary to detect, correct, or mask errors during memory
accesses and to reconfigure the system when modules fail.
This framework provides the flexibility needed to repre-
sent many different architectures without requiring cus-
tom simulation models for each one. React can analyze
multiprocessor systems that use N-modular redundancy,
duplication and comparison, standby sparing, or error-
control coding to achieve fault tolerance.

React assumes a synthetic work load. Processors con-
tinually perform instruction cycles consisting of several
possible memory references and the simulated execution
of an instruction. React does not use real application code
and data, but allows errors to propagate throughout the
system as if the software were actually being executed.
The work load model is specified by a mean instruction
execution rate, the probabilities of performing a memory
read and write access per instruction, and a locality-of-
reference model that determines which locations are
accessed. These parameters can easily be extracted from
memory reference traces collected during application soft-
ware development.

Permanent and transient faults can be automatically
injected into a system's processors, memories, and fault-
tolerance mechanisms. Fault occurrence times are sampled
from a Weibull distribution. Faults affect a processor's data
and control paths and a memory's bit-array and addressing
logic. Each faulty component's erroneous behavior is gov-
erned by a stochastic model that accounts for both fault and
error latency. We derived these stochastic models from the
results of other low-level fault-injection experiments. Repair
times for failed components are assumed to have a log-
normal distribution after a fixed logistics delay. The time
required to reintegrate a repaired component back into the
system and the time to reboot the system aftera critical fail-
ure are constant and user specified.

We demonstrated the effectiveness of React by analyz-
ing several alternative multiprocessor architectures. Spe-
cifically, we investigated two dependability tradeoffs
associated with triple-modular redundant (TMR) systems.
The first study explored the reliability/performance trade-
off in voting unidirectionally instead of bidirectionally on
either memory read or write accesses. The second study
examined the reliability/cost tradeoff in duplicating and
comparing (via error-detecting codes) the memory mod-
ules rather than triplicating and voting on those modules.
Both studies showed that a small sacrifice in reliability can
be made for potentially large performance increases or
cost reductions compared to traditional TMR design.

FAULT INJECTION HAS BECOME A VALUABLE ASSET for evalu-
ating computer system dependability. It has been used to
obtain analytical-model parameters, validate existing
fault-tolerant systems, and synthesize more reliable sys-
tem designs. However, many problems remain.

One challenge is to reduce the large fault space associ-
ated with highly integrated systems. This will require
improved sampling techniques and mode*ls that equiva-
lent^ represent the effects of low-level faults at higher

B Bus
M Memory module
P Processor module

abstraction levels. The im-
pact of specification and
design faults, particularly
in software, is another
largely unexplored prob-
lem. A better understand-
ing of their occurrence is
necessary before we con-
sider injecting specification
and design faults to validate
computer-system depend-
ability. Another obstacle is
the difficulty in controlling
the injection of environ-
mentally induced faults. In
addition, little is known
about the relationship be-
tween faults in-jected in a
laboratory and those actu-
ally occurring in the field.

Finally, most fault-injection experiments are essentially
case studies of particular systems. We must develop ways
of generalizing machine-specific results to expand their
applicability to other systems. Growing dependence on
computers in life- and cost-critical applications makes this
essential. |

Acknowledgments
This material is partially based on work supported by

the Texas Advanced Technology Program under grant
999903-029 and by the Air Force Office of Scientific
Research under grant F49620-94-1-0276.

Figure 9. Class of archi-
tectures that React can
analyze.

References

4.

5.

G.S. Choi and R.K. Iyer, "Focus: An Experimental Environ-
ment for Fault Sensitivity Analysis," IEEE Trans. Computers,
Vol. 41, No. 12, Dec. 1992, pp. 1,515-1,526.
J. Karlsson et at., "Two Fault-Injection Techniques for Test of
Fault-Handling Mechanisms," Proc. Intl Tcs[Conf., IEEE CS
Press, Los Alamitos, Calif., Order No. 2156,1991, pp. 140-149.
R. Chillarege and R.K. Iyer, "An Experimental Study of Mem-
ory Fault Latency," lEEETrans. Computers, Vol. 38, No. 6, June
1989, pp. 869-874.
R. Chillarege and R.K. Iyer, "Measurement-Based Analysis of
Error Latency," lEEETrans. Computers, Vol. C-36, No. 5, May
1987, pp. 529-537.
E.W. Czeck and D.P. Siewiorek, "Effects of Transient Gate-
Level Faults on Program Behavior," Proc. 20th Intl Symp.
Fault-Tolerant Computing, IEEE CS Press, Los Alamitos, Calif.,
Order No. 2051,1990, pp. 236-243.

6. R. Chillarege and N.S. Bovven, "Understanding Large-System
Failures: A Fault-Injection Experiment,"Proc 19th IntlSymp.
Fault-Tolerant Computing, IEEE CS Press, Los Alamitos, Calif.,
Order No. 1959,1989, pp. 356-363.

7. K.K. Goswami and R.K. Iyer, "A Simulation-Based Study of a
Triple-Modular Redundant System Using Depend," Proc Fifth
IntlConf. Fault-Tolerant Computing Systems, IEEE Press, Pis-
cataway, N J., 1991, pp. 300-311.

8 J.A. Clark and D.K. Pradhan, "Reliability Analysis of Unidi-

June 1995

28

to;

ii

rectionat Voting TMR Systems Through Simulated Fault
Injection," Proc 1992 Workshop Fauk-Toleranc Parallel and
Distributed Systems, IEEE CS Press, Los Alamitos, Calif., Order
No. 2871,1992, pp. 72-81.

9. J. Arlat et al., "Fault Injection for Dependability Validation: A

Methodology and Some Applications " IEEE Trans. Software
Engineering, Vol. 16, No. 2, Feb. 1990, pp. 166-182.

10. Z. Segall et al., "Fiat: Fault-Injection-Based Automated Test-
ing Environment," Proc. 18th Intl Symp. Fault-Tolerant Com-
puting, IEEE CS Press, Los Alamitos, Calif., Order No. 867,

1988, pp. 102-107.
11. G.A. Kanawari, N-A. Kanawari, and J.A. Abraham, "Ferrari:

A Tool for the Validation of System Dependability Proper-

ties," Proc 22nd Intl Symp. Fault-Tolerant Computing, IEEE
CS Press, Los Alamitos, Calif., Order No. 2876,1992, pp. 336-
344.

12. J-A. Clark and D.K. Pradhan, "React: A Synthesis and Evalu-
ation Tool for Fault-Tolerant Multiprocessor Architectures,"
Proc 1993 Annual Reliability and Maintainability Symp., IEEE
Press, Piscataway, N.J., 1993, pp. 428-435.

Jeffrey A. Clark is a member of the technical staff in the
Reliability and Maintainability Center at the Mitre Corpo-

ration. His research interests include fault-tolerant comput-
ing, parallel processing, andsystem dependability modeling

and simulation. He received a BS in electrical and computer
engineering (ECE)from Carnegie Mellon University in 1987,
and an MS and PhD in ECEfrom the University of Massa-
chusetts atAmherst in 1989 and 1993, respectively. He is a
member of the IEEE Computer Society and the Reliability
Society.

Dhiraj K. Pradhan holds the College of Engineering
Endowed Chair in computer science at Texas A&M Uni-
versity. He has been actively involved in research of fault-
tolerant computing, parallel processing, and VLSI testing

over the last20years, presenting and publishing numerous
papers. He has served as guest editor for special issues on
fault-tolerant computing in IEEE Transactions on Com-

puters and Computer, and is an editor for several journals,
including IEEE Transactions on Computers and JETTA.
Pradhan has abo served as general chair for the 22nd Fault-
Tolerant Computing Symposium and as program chair for
the IEEE VLSI Test Symposium. He is a fellow of the IEEE and
a recipient of the Humboldt Distinguished Scientist Award.

Readers can contact Clark at the Mitre Corporation, Maibtop

HU3, 202 Burlington Road, Bedford, MA 01730; e-mail

jedark@mbunix.mitre.org; andPradhan at theComputer Sci-
ence Department, H.R. Bright Building, Texas A&M Univer-

sity, College Station, TX77843; e-mailpradhan@cs.tamu.edu.

Advanced Topics
in Dataflow
Computing and
Multithreading
edited by Lubomir Bic. Jean-Luc
Gaudiot. and Guang R. Gao

Examines recent advances in
design, modeling, and imple-
mentation of dataflow and multi-
threaded computers. The text

reports on the broad range of dataflow principles in program
representation — from language design to processor
architecture — and compiler optimization techniques. It
includes papers on massively parallel distributed memory,
multithreaded architecture design, superpipelined data-
driven VLSI processors, the development of well-structured
software, and coarse-grain dataflow programming.

412 pages. June 1995. Softoover. ISBN 0-8186-6542-4.
Catalog # BP06542 - $41.00 Maitoers / $54.00 List

IEEE

Emerging Trends htoK^d
in Database and imMptoathä*,*

Knowledge-Base
Machines
edited by Mahdi Abdelguerfi
and Simon Lavington

Illustrates interesting ways in
which new parallel hardware is being
used to improve performance and
increase functionality for a variety of
information systems. The book surveys the latest trends in
performance enhancing architectures for smart information
systems. The machines featured throughout this text are
designed to support information systems ranging from
relational databases to semantic networks and other artificial
intelligence paradigms. In addition, many of the projects
illustrated in the book contain generic architectural ideas
that support higher-level requirements and are based on
semantics-free hardware designs.

316 pages. March 1995. Hardcover. ISBN 0-8186-6552-1.
Catalog # BP06552 - $42.00 Matters / $56.00 List

COMPUTER
SOCIETY

■2^20^&ik^^i^.$Rk< if. -, .=a\S£*i#¥f«tp

Äail;;[c».bööksfe;computer;brqt>Wt-;

THE INSTITUTE OF ELECTRICAL ANO
ELECTRONICS ENGINEERS. INC.

Computer

III. Research in Mobile Computing

f?-'

kJ.

hM

?n

Providing Seamless Communications in Mobile Wireless Networks*

P. Krishna Bikram S. Bakshi N.H. Vaidya D.K. Pradhan
Department of Computer Science

Texas A&M University

College Station, TX 77843-3112

Email: {pkrishna,bbakshi,vaidya,pradhan}@cs.tamu.edu

&

£S3

Abstract
This paper presents a technique to provide seamless

communications in mobile wireless networks. The goal
of seamless communication is to provide disruption
free service to a mobile user. A disruption in service
could occur due to active handoffs (handoffs during
an active connection). Existing protocols either pro-
vide total guarantee for disruption free service incur-
ring heavy network bandwidth usage (multicast based
approach), or do not provide any guarantee for dis-
ruption free service (forwarding approach). There are
many user applications thai do not require a "total"
guarantee for disruption free service but would also not
tolerate very frequent disruptions. This paper proposes
a novel staggered multicast approach which provides a
probabilistic guarantee for disruption free service. The
main advantage of the staggered multicast approach is
that it exploits the performance guarantees provided
by the multicast approach and also provides the much
required savings in the static network bandwidth.

The problem of guaranteeing disruption free service
to mobile users becomes more acute when the static
backbone network does not use any packet numbering
or does not provide retransmissions. Asynchronous
Transfer Mode networks, the future of B-ISDN, dis-
play these properties. To make our study complete,
we present a possible implementation of our scheme
for wireless ATM networks.

1 Introduction
Mobility has opened up new vistas of research in

networking. With the availability of wireless interface
cards, mobile users are no longer required to remain
confined within a static network premises to get net-
work access. Users of portable computers would like
to carry their laptops with them whenever they move
from one place to another and yet maintain transpar-
ent network access through the wireless link. Inte-
grated voice, data and image applications are going
to be used by millions of people often moving in very
heavy urban traffic conditions.

On the downside, mobility brings along with it a
myriad of network management problems. The prob-
lems could be broadly classified as mobility manage-

* Research reported is supported in part by AFOSR under
grant F49620-94-1-0276, and Texas Advanced Technology Pro-
gram under grant 999903-029.

ment related and connection management related. In
this paper we will primarily deal with a key problem in
mobile wireless networks related to connection man-
agement. The problem deals with providing disrup-
tion free service to mobile users.

Future personal communication networks (PCN)
will allow users to engage in bi-directional exchange of
information including but not limited to voice, data,
and image, irrespective of location and time, while
permitting users to be mobile. Even though, near
term personal communication services (PCS) are go-
ing to be voice-oriented, PCN are expected to support
multimedia PCS in the long term [13]. This will spur
requirements for high capacity wireless networks.

A typical PCN with mobile users [8, 9, 10] com-
prises of a static network and communication links
between them. Some of the fixed hosts, called base
stations (BS)1 are augmented with a wireless inter-
face and they provide a gateway for communication
between the wireless and static network. Due to the
limited range of wireless transceivers, a mobile user
can communicate with a BS only within a limited ge-
ographical region around it. This region is referred to
as a base station's cell. A mobile user communicates
with one BS at any given time. Each BS is responsible
for forwarding data between the mobile user and the
static network.

When a mobile host is engaged in a call or data
transfer, it will frequently move out of the coverage
area of the mobile support station it is communicat-
ing with, and unless the call is passed on to another
cell, it will be lost. Thus, the task of forwarding data
between the static network and the mobile user must
be transferred to the new cell's mobile support station.
This process, known as handoff, is transparent to the
mobile user. Handoff helps to maintain an end-to-end
connectivity in the dynamically reconfigured network
topology.

As the demand for services increase, the number of
cells may become insufficient to provide the required
quality of service. Cell splitting can then be used to
increase the traffic handled in an area without increas-
ing the bandwidth of the system. In future, the cells
are expected to be very small (less than 50 meters in
diameter) covering the interior of a building. The re-

Base stations are sometimes called mobile support stations.

31

m
I:'}

3»

ssS

auction in the cell size causes an increase in the num-
ber of handoffs, thereby increasing the signalling traf-
fic (network load) due to the handoff protocol mes-
sages. In addition, handoff also causes a disruption in
service if it is not done in a fast and efficient manner.
In this paper we will primarily deal with design and
implementation issues of handoff protocols to ensure
disruption free service.

Providing connection-oriented services[14, 15, 16,
17, 18] to the mobile users requires that the user al-
ways be connected to the rest of the network in such
a manner that its movements are transparent to the
users. Providing disruption free service is a stronger
requirement than mere connection-oriented services.
In addition to maintaining the connection, the net-
work will need to ensure that the delay experienced
by the data packets over the network is less than a
fixed time called the deadline. The deadline is in turn
determined by the quality of service (QOS) required
by the users. The goal of seamless communication is
to provide disruption free service to a mobile user. A
disruption in service could occur due to active hand-
offs (handoffs during an active connection). This is
because traditional protocols require the old BS to
forward data packets to the new BS. Thus, every time
a mobile user moves into a new cell during the con-
nection (active handoff), the user will see a break in
service while the data gets forwarded to it from the
old BS via the new BS.

We first present the proposed approach for pro-
viding disruption free service to mobile users. Our
work differs from existing protocols in that the net-
work load incurred by the proposed approach is sig-
nificantly lower as compared to others. The number of
disruptions seen by the user will depend on the number
of handoffs incurred during the lifetime of the connec-
tion. The number of handoffs in turn depends on the
mobility pattern of the user. In this paper we use two
mobility models to analyze the proposed approach. In
the first model, the user spends very little time in
a cell (handoffs occur frequently), while in the other
model the user spends a long time in a cell (hand-
offs occur infrequently). Analysis shows that for both
these models, the proposed approach significantly re-
duces the network bandwidth usage without violating
the quality of service (QOS) requirements specified by
the user application.

The problem of guaranteeing disruption free service
to mobile users becomes more acute when the static
backbone network does not use any packet numbering
or does not provide retransmissions. Asynchronous
Transfer Mode networks, the future of B-ISDN, dis-
play these properties. The second half of the paper
deals with implementation issues of the proposed ap-
proach. The backbone network has been assumed to
be an asynchronous transfer mode (ATM) network.
The vast transmission capacity offered by an ATM
broadband network can provide communication ser-
vices to a wide range of applications including video
and audio. It is thus a natural choice for multime-
dia services. ATM is basically a connection-oriented
switching technology. Users need to establish a fixed
route called a virtual channel (VC) before any infor-

mation can be exchanged. To make maximum use of
available bandwidth, multiple VCs can be statistically
multiplexed over the same link. Issues related to ATM
have been comprehensively treated in [19, 22, 23].

While ATM promises to do away with the present
problems faced by the telephony community, it raises
a number of issues for the mobile computing indus-
try. As mentioned before, existing ATM protocols do
not offer any packet numbering and prohibit packet
reordering. In this scenario maintaining a continu-
ous (disruption free) communication link to the mo-
bile host becomes complicated. We thus need to en-
sure that once a handoff takes place no packet is lost
and deadlines are met, i.e., the packets that have been
transmitted to the previous BS and which have not
reached the mobile host due to handoff, are some-
how delivered to it within the given time constraint.
Keeping these problems in mind, we propose an eas-
ily implementable technique to provide disruption free
service to mobile hosts in wireless ATM networks.

The rest of this paper is organised as follows. In
section 2 we briefly review related work. The basic
idea behind our scheme is presented in section 3. Sec-
tion 4 presents the issues related to implementation
of the proposed approach using ATM as the backbone
network. Concluding remarks are presented in section
5.

2 Related Literature
Keeton et al in [2] proposed a set of algorithms to

provide connection oriented network services to mo-
bile hosts for real time applications like multimedia.
Their solutions lay excellent groundwork for work in
this area but did not guarantee disruption free ser-
vice. In fact their scheme was shown to suffer from
extended intervals of time when service to the mo-
bile host was disrupted. A study done in [1] shows
that if the handoff protocol required forwaraing data
between the BSs connected by physical links, then a
high bandwidth (between 48Mbps and 96Mbps) is re-
quired just to forward these data packets. Moreover,
loops can be formed in the connection path if forward-
ing is employed. This will lead to inefficient network
utilization.

A multicast based solution was proposed in [1]. In
this approach, the data packets for a mobile host are
multicast to the BSs of the neighboring cells so that
when the host moves to a new cell, there are data pack-
ets already waiting for it and thus, there is no break in
service. It is evident, however, that this scheme is not
cost effective. As the number of users in the network
increases, the amount of network bandwidth used up
by the multicast connections is going be prohibitively
high. In [1], the cost of such a multicast scheme was
determined to be the buffer overhead at the BSs. Our
view of the problem is that the major component of
cost incurred in a multicast based approach will be the
amount of extra bandwidth used, and not the buffer
overhead at each BS. This argument is supported by
the availability of cheap memory but expensive net-
work bandwidth2.

The cost of a 30 minute call from USA to Japan is approx-

32

m

. i

As pointed out in [3], the network call processor3 in
a static network becomes the bottleneck in an environ-
ment where handoffs are frequent and require exces-
sive interaction with a base station - an inherent prob-
lem associated with the work in [2]. To alleviate this
problem, the authors in [3] proposed a new network
architecture which made use of virtual circuit trees to
minimize handoff processing. However, it does not
discuss about providing disruption free service when a
handoff takes place - the mainstay of applications like
multimedia [23].

We find that while existing literature is a rich source
of protocols and models for tackling the problem in
hand, there does not exist a cost-effective solution for
providing disruption free service.

3 Proposed Approach
Traditional multicast-based schemes require the

packets to be multicast throughout the length of the
connection. This leads to wastage of network band-
width. The communication links from the switch to
the BSs other than the BS of the cell where the mo-
bile host is currently located get unnecessarily loaded.
As the number of mobile hosts increase in a cell, the
total network usage due to multicast connection for
each host will become enormous. Due to this extra
network usage, new connections might be blocked be-
cause the network capacity is exceeded.

The thrust of our approach is to avoid unnecessary
multicast. A multicast throughout the length of the
connection may prove to be unecessary if the network
had some information - e.g., how long is the mobile
host going to remain in the same cell (this period is
called cell latency). If the network has such informa-
tion, then the multicast need not be done during that
period of time.

The main idea of the proposed approach is to "stag-
ger" the multicast initiation by the amount of time
one is sure that the host remains within a cell, i.e.,
for a time interval equal to the cell latency. The cell
latency will solely depend on the mobility model of
the host. In this paper we will analyze the proposed
approach based on two mobility models. One model
is pessimistic in nature, and the other optimistic. By
pessimistic we mean that the cell latency for a mobile
host is very small. On the other hand in the optimistic
model, the mobile host remains in a cell for a longer
time.

We will now present the staggered multicast ap-
proach.

3.1 Staggered Multicast
If the mobility pattern of a user could be modelled

in such a way that it can be ascertained with a certain
probability that the user is going to remain in the same
cell for ts amount of time, multicast could be avoided

imately equal to the cost of 1 Mbyte of RAM.
The role of the neltuori call processor is to establish a path

or route at connection setup time. While doing so it takes into
account the network load so as to balance the load on each
network node.

for this amount of time. The value of t, then4 gives
us a measure of the stagger time than can be safely
introduced before initiating a multicast. This way, we
will save on the network usage, and still guarantee
disruption-free service with a certain probability.

Let P(be the probability of disruption during the
i-lh handoff, and U be the cell latency before the :'-
th handoff. Let tmi be the time spent in multicast
mode before the i-th handoff. A disruption occurs
when a mobile host initiates a handoff before multicast
has been initiated. Then the probability of disruption
during the i-th handoff can be given as,

Pi = Pr[t, > U]

Let the number of handoffs occuring over the length
of the connection time Tc be Nk- Let Pdisrupt be
the average probability of disruption during a handoff.
Pdisrupt is determined as,

*disru Pt

1 N"

= £?>
The value of Pdismpt can now be used as a measure of
the Quality of Service (QOS). There are a number of
applications that cannot tolerate disruptions during
the time of connection, i.e., Pdisrupt = 0. Two ex-
isting examples of such applications are telemedicine,
and video conferencing. With increased availability
of mobile computing applications, a large number of
hitherto unexplored applications will emerge. The ap-
plications mentioned here are but only a small sample.

Star!

lml lrr2 lm3 W

Figure 1: Total Guarantee

Figure 1 presents an example showing the times of
handoffs and multicast initiations. The times B, D,
F, and H represent the time at which handoff takes
place. The times A, C, E, and G represent the time
at which multicast is initiated. The cell latencies for
Figure 1 are <i = t, + tml, t2 = t, + tm2, and so on.
For total guarantee, the following should hold.

v«M<*< JVfc,*, <*,•

i.e., for all handoffs a multicast is initiated within the
associated cell latency interval.

However, there are a lot of applications that do
not have a strict requirement of disruption free ser-
vice during every handoff. A probabilistic guarantee

It should be mentioned here that the actual time for stagger
is less than t3, because the time to set up the multicast con-
nections should be taken into account. This has been dealt in
greater detail in Section 4.3 for a wireless ATM network.

33

is sufficient for such applications, i.e., Pdisrv.Pt > 0.
Examples of such applications include ftp, audio chan-
nels and movies. If the QOS requirement can be ex-
pressed as a probablisitic guarantee for disruption free
service, then the multicast initiation could be further
staggered resulting in an even greater reduction of net-
work usage.

Let us consider a picocellular environment, which
is more suited for pedestrian traffic. Let « = 0.4m, T
= 0.25 sec. Therefore, a = 1.0. We vary the radius
of the circular cell R from 10m to 50m. The variation
of the probability with time is illustrated in Figure 3.
As seen in the figure, the probability of the mobile

Probability of remaining in the cell

L

m

Start
B CD

w w
F__ G

lm3

Disruption in service
during handoff

Figure 2: Probabilistic Guarantee

To illustrate this probabilistic scheme we present
an example as shown in Figure 2. This figure shows
the times of handoffs and multicast initiations in the
multicast scheme that provides a probabilistic guar-
antee. The times B, D, E, and G represent the time
at which handoff takes place. The times A, C, and F
represent the time at which the multicast is initiated.
As noticed in the figure, there is a disruption in service
during handoff at time E, because, there was no mul-
ticast initiated before the handoff. Thus, a disruption
occurs during the i-th handoff when the stagger time
ts is greater than the cell latency time i,-.

_ In the absence of any empirical data for user mo-
bility, we propose to evaluate the effectiveness of our
scheme using two mobility models, which we believe
cover a wide range of user mobility. At this point we
would like to mention that the main aim of this*paper
is not to show that the two models cover the whole
spectrum of user mobility, but, to show that with the
aid of user mobility information, we can drastically
reduce the network load and still provide disruption-
free service. We will be able to correctly estimate the
benefits obtained from the proposed approach only if
we can accurately model the user mobility.
3.2 Mobility Models
3.2.1 Optimistic Model

The optimistic model is based on the two dimensional
random walk model. Let the two dimensions be the X
axis and the Y axis. In such a model, the user tosses
two coins every T seconds. Based on the resulting
head-tail combination, the user will decide to take a
step of size s meters in a specific direction (e.g., head-
head results in a step in the north-east direction). Let
the distance of the user with respect to the center
of the circular cell at time t be r(t). As derived in
Appendix 1, the probability that a mobile user will
remain in the same cell at time t is given as,

Prob(r(t) < Ä) = 1

where, R is radius of the cell, and a

e 3o,i (1)

in minutes

s7/T.

Figure 3: Probability of being in a cell

host remaining in a cell decreases with time. An in-
teresting observation however is that even after 3.25
minutes (195 seconds), the probability that the user
is still in the same cell (R = 30m) is as high as 90%.
This mobility model represents the class of users who
spend a lot of time in a cell.

3.2.2 Pessimistic Model

The pessimistic model is based on the mobility model
proposed in [5]. In this model the mobile user is as-
sumed to be moving at an average velocity of V. The
direction of movement is uniformly distributed over
[0,2-}. The mobile users are assumed to be uniformly
distributed over the cell area with a density of p. If the
length of the cell boundary is L, and the cell area 5,
the number of mobile users crossing the cell boundary
per unit time is given by ^. If p can be assumed to
remain constant over the entire cell area, the average
cell crossing rate of a mobile user is given by ^j. For
circular cells, L will correspond to the perimeter of a
cell, and thus j = jj. It follows that the average cell
latency of a mobile user is given §£. As in [5], we
will assume that the cell latency of a mobile user is
exponentially distributed with a mean $.
3.3 Performance Analysis of the Stag-

gered Multicast Approach
The overhead of the staggered multicast scheme can

be characterized by the total time spent in the multi-
cast mode Tm as compared to the length of connection
Tc. Tm is determined as

ffK

5>

34

f£

I.'-.'

®

where, <mt- is the time spent in multicast mode before
the i-th handoff, and Nh is the number of handoffs oc-
curing over the length of connection. The total time
spent in the unicast mode, Tu, is then given by the
difference, Tc — Tm. We determine the overhead of the
multicast scheme as the fraction of the total connec-
tion time spent in the multicast mode,

Overhead — -^-

The QOS measure of the staggered scheme (char-
acterized by Pdisrupt) is now given as

QOS = 1 - Pdisrupt

3.3.1 Performance of Optimistic Model

In this section we present the results of the staggered
multicast scheme obtained using the optimistic model.
We performed simulations to analyze the staggered
multicast scheme. The radius of the circular cell R
was varied from 10m to 50m. The time of connection
Tc, was fixed to be 100 minutes. The step size s was
chosen to be 0.4m, and the time interval between two
tosses T was chosen to be 0.25 s.

As stated earlier, we characterize the overhead as
Tm/Tc. Figure 4 illustrates the variation of overhead
with the stagger time ts. It is noticed in Figure 4 that
the overhead reduces as the stagger time increases.
This is because as stagger time increases, the amount
of time spent in multicast mode reduces. Thus, the
overhead, determined as Tm/Tc, reduces. It can also
be noticed that for a given stagger time, the overhead
increases with an increase in cell radius. This is be-
cause as the radius increases, the time interval between
handoffs increases. If stagger time is kept constant,
we are not making use of the potentially extra time
available due to increased cell radius. As a result the
fraction of time spent in multicast mode increases.

We also evaluated the probability of a disruption
during a handoff, PdUrupt ■ As stated earlier, a disrup-
tion occurs only if multicast is not initiated before a
handoff occurs. Figure 5 illustrates the variation of
probability of disruption with stagger time ts. Higher
the stagger time, higher is the probability of disrup-
tions. It can also be noticed that for a given stagger
time, the probability of disruption increases as the ra-
dius of the cell decreases. This is because as the ra-
dius decreases, the probability of remaining in a cell
reduces for a given stagger time. Therefore, the prob-
ability of disruption increases.

Using these results, the network can determine the
appropriate stagger time for a user. Let us illustrate
it with an example. Let the radius of the cells in the
network be 30 m.

Suppose that the users in a network are maintain-
ing non-critical connections. This means that a proba-
bilistic guarantee will suffice. Let the QOS demanded
by the users be 75 %. This means that Pdisrupt = 25%,
i.e., on an average three out of four h'andoffs will be
guaranteed to be disruption free. Then, using Fig-
ure 5, we can determine the appropriate stagger time,

0 200 400 600 800 1000

Stagger Time in Seconds

High -* OPS *■ Low

Figure 4: Optimistic Model : Overhead Vs Stagger
Time

£
S

200 400 600 800

SUgger Time in Seconds

High -« QOS *■ Low

1000

Figure 5: Optimistic Model : Probability of Disrup-
tion Vs Stagger Time

35

p- which is 650 seconds (approx. 11 minutes). There-
\A fore, the multicast initiation can stagger by 11 min-

1 J utes and we will still provide the desired QOS to the
users. The overhead of such a staggered scheme can
be determined using Figure 4 to be 50%. Therefore,
the network spends only 50% of the total connection

L ' time in multicast mode for the user. In a traditional
multicast based solution for disruption free service,
the network spends 100% of the connection time in
multicast mode [1]. Comparing it to the traditional
multicast based solutions, there is a 50% savings in
network bandwidth.

Suppose on the other hand, a user is maintaining
a critical connection which demands total guarantee

-C, of disruption free service, i.e., the QOS demanded by
the user is 100 %. Even though a non-zero value of
stagger time could be obtained for Pdisrupt = 0 in

■ J the optimistic model (e.g., ts = 3 minutes for R =
;■'.■■ 30m in Figure 5), this may not be true in general for

other models. In fact the next model shows that for
total guarantee of disruption free service, stagger time

■-.: has to be zero. In other words, for total guarantee
|;4 of disruption free service, multicast should be done

throughout the length of the connection.

/v;" 3.3.2 Performance of Pessimistic Model

Simulations were performed to analyze the multicast
scheme using the pessimistic mobility model. The mo-
bility model for this part was same as the mobility
model proposed in [5]. The radius of the circular cell
R was varied from 10m to 50m. The time of connec-
tion Tc, was fixed to be 100 minutes. The average ve-
locity V was chosen to be 1.6 m/s (approx 5.7 km/hr,
for a pedestrian user).

100
fl^i
iffiS

so

-a 60

3gg(-e
«i

S& 6 40

20 "

■v ' ' '

\'-'^ 10m
-\""** N. 20m -
\ "• WN 30m
\ *■ \ *■* *•*■ 40m

" \ '■■ \ *C ^ 50m

\ *■ **.. "***, "* *«.

\ '*-. "*-*v ~---. — — ^

^^^"■■"■•■••••■•■v*".::.
-

....i "--"ST::
40 60 80

Stagger Time in Seconds

High -« QOS *- Low

100

Figure 6: Pessimistic Model
Time

Overhead Vs Stagger

The trends in the variation of overhead (Figure 6)
and probability disruption (Figure 7) with respect to
stagger time for the pessimistic mobility model are
similar to the optimisitic model. But as was expected,
the allowable stagger time in the pessimistic model for
a particular QOS is very low compared to the allow-
able stagger time in the optimistic mo'del. For exam-
ple, when R = 30m, QOS = 75 %, the allowable stag-
ger time in the optimistic model is 650 seconds. On

the other hand for a pessimistic model, the allowable
stagger time is only 9 seconds.

2
2

100

so

i ^—+-*' 1 :".":4—

/^ ..-"• '-'.--lOm-—"■".
/ .-•••■ ..--"" .----'"_ --30m■"--—.

/ .-•■' .--** .---'"_-''- 30m
/ .-•' ,.-' ..-',--' 40m

60 ."' _.-' ..-' - -' SOm

** *' s
40

,
20

/*#'*' •'
s

0
'v
 1 1 1 1

20

High

40 60

Stagger Time in Sccoods

-e QOS -

100

Low

Figure 7: Pessimistic Model : Probability of Disrup-
tion Vs Stagger Time

Another noticeable difference with the optimistic
model is that there is no stagger time allowable.for to-
tal guarantee service (i.e., when Pdisrupt = 0). Thus,
for a user whose mobility pattern can be modelled
with the pessimistic model, multicast has to be done
throughout the connection time if the user desires to-
tal guarantee of disruption free service. On the other
hand, if the user requires only a probabilistic guaran-
tee, then a non-zero stagger can be introduced. For
example, if the QOS demanded by the user is 75 %.
Then, using Figure 7, we can determine the allowable
stagger time to be 9 seconds. The overhead of such a
staggered scheme can be determined using Figure 6 to
be 73 %. Therefore, when compared to the traditional
multicast schemes, there is a 27% savings in network
bandwidth.

3.3.3 Discussion

In this section we have presented a staggered multi-
cast approach. The main features of this approach are
that it saves network bandwidth by providing a prob-
abilistic guarantee for disruption free service. We ana-
lyzed the proposed approach for two mobility models.
These models represented two different classes of mo-
bile users - those with high cell latency, and those with
low cell latency. The results indicate that regardless
of the mobility model, the proposed approach provides
tremendous savings in network bandwidth for appli-
cations that require a probabilistic guarantee. We ex-
pect the performance of the proposed approach for a
typical user mobility model to lie somewhere in be-
tween the performance gains obtained for these mod-
els.

In the next section we will present an implemen-
tation of the proposed approach on a wireless ATM
network.

4 Implementation on ATM Network
4.1 System Model

36

i ■:

F-5)

m

.<■■-*

Figure 8: PCN Model

We view the future personal communication net-
work as a two tier network - a backbone static ATM
network and a peripheral wireless network. This
model is similar to the one proposed in [4]. Figure 8
shows ATM switches connected to base stations which
in turn provide service to the mobile hosts. ATM cells
are received by the base stations from the static net-
work and forwarded to the mobile hosts.

4.2 Protocol
We define a multicast group gi as the set of base sta-

tions that are included in the multicast operation for
the mobile host i. The base stations maintain a table
which maps each mobile host in its cell to its multi-
cast group members. The group members for a mobile
host can be determined based on some hints (direc-
tion, velocity). If no hints are available, the default
multicast group members will be the neighboring base
stations [l].

The connection management problem can be di-
vided into two phases, namely, connection establish-
ment phase and connection maintenance phase. The
source mobile host initiates the connection establish-
ment phase by sending a connection request message
to its base station. The base station forwards this
message to its switch. The switch assigns a VCN (vir-
tual circuit number) for the source mobile host. The
switch then initiates a locate procedure for the des-
tination mobile host [10, 11, 12]. Upon getting the
location information of the destination mobile host, a
connection is set up between the source and the desti-
nation mobile host via the switches at the source and
the destination.

Our work differs in the connection maintenance
phase. Please refer Figure 9 for the discussion. The
thick lines in Figure 9 represent the data packets be-
ing transferred over the static network, and the thick
dashed lines represent the data packets being trans-
ferred over the wireless medium between the base sta-
tion and the mobile host. The thin lines represent the
control messages being transferred over the static net-
work, and the thin dashed lines represent the control

Unicast
Mode

Multicasl
Mode

Unicast
Mode

ma is in

the cell of
BS1

mhisin
the cell of
BS2

BS1 BS2 mh

Figure 9: Connection Maintenance

messages being transferred over the wireless medium.
Once a connection is established, the switch SW is

in the unicast mode, i.e., it forwards the data pack-
ets to only the "current" base station BSl, which in
turn forwards it to the mobile host mh (steps 1-2).
After tdagger units of time5, BSl sends a multicast
initiate message to SW (step 3). The multicast group
members gmh are tagged along with the message. The
switch SW then determines the crossover point for the
multicast group members. The VCNs to the base sta-
tions in gmh are assigned, and the switch SW sends
back the list of VCNs to BSl which forwards it to
mh (step 4). Upon receiving an acknowledgment from
mh, SW enters the multicast mode. Let us suppose
that the multicast group members are BSl and BS2.
SW multicasts the data packets to the base stations
BSl and BS2 (step 5). However, only the current
base station which is J951 forwards the data packets
over the wireless medium to mh (step 6). This con-
tinues till the mobile host mh detects that it has to
handoff to BS2. The mobile host mh then sends a
handoff initiate to the new base station BS2 (step 7).
The base station BS2 starts transmitting data to the
mobile host (step 8). It also forwards handoff initi-
ate message to the switch SW (step 9). The switch
SW then terminates the connections to the multicast
group members except for BS2 (step 10). SW then
reenters the unicast mode and sends the data packets
to only the "current" base station BS2, which in turn
forwards it to mh (step 11).

5It will be shown later that tstaggcr < ta

stagger time derived in Section 3.
where t, is the

37

4.3 Implementation Issues
Given the lossy nature of the wireless medium,

there may be a need to frame groups of ATM cells at
the BS and assign them some kind of sequence num-
bers. Additional bits to enable error correction and to
allow recovery schemes may also be required for each
frame. Likewise communication from the mobile host
to a base station will consist of frames of ATM cells
with additional bits as described above. Going by the
philosophy behind ATM, it is likely that each frame
will be small and of equal size. In line with this, we as-
sume that all frames will be of fixed length containing
F ATM cells. 6

Before we can apply our scheme to an ATM envi-
ronment, we must take into account the various prop-
erties of ATM network protocols that make them differ
from existing network protocols. As was mentioned
before, ATM is a connection oriented switching tech-
nology where connections must be established for the
entire duration of the call. Connection establishment
consists of assigning a VCN (virtual circuit number)
and/or a VPN (virtual path number), and allocation
of resources both within the network and at the source •
and destination to support this connection. In a mo-
bile environment we will thus need to ensure that be-
fore a mobile host hands off, connection has already
been established between the new base station and
the destination. For this purpose, we make use of a
dynamic virtual connection tree (dvci) based network
architecture, an extension to the idea proposed in [3].
For sake of completeness, we will describe the virtual
connection tree in some more detail.

A virtual connection tree [3] is a set of cellular ATM
switches and base stations in the static network that
are chosen at call setup time to route ATM cells. The
network is divided into neighboring access regions and
the mobile host is assigned a set of VCNs, one for
each base station in this region. As soon as the mo-
bile host detects that it is entering another wireless
cell, it starts transmitting its messages with the VCN
assigned for that base station. This change in position
of the mobile host is updated at the root of the vir-
tual connection tree (an ATM switch that maintains
the routing tables for this connection) as soon as the
first ATM cell from the mobile host arrives bearing
the new VCN. The study showed considerable reduc-
tion in load on the network call processor. The only
time that the network call processor participates in a
handoff is when the mobile host changes its neighbor-
ing access region. As noted by the authors, handovers
within this connection tree are handled entirely by the
mobile itself in a totally distributed fashion.

A dvci differs from a virtual connection tree in that
the choice of participating base stations and ATM
switches depends on the current location of the end-
points and may change dynamically, i.e., base stations
and switches may be dynamically added and removed
depending on the movement of the mobile host. All
the base stations and ATM switches included in the
multicast operation can now be viewed,as a dvci. Fig-
ure 13 is an example of how bidirectional communi-
cation takes place between two end points - both of
which may be mobile, in a dvci using the multicasting

approach.
We consider an example to make the dvci approach

more clear. Suppose that switch A is connected to
base stations a and 6. Let a be providing a connection
between a mobile host ml in its wireless cell and a mo-
bile host m2 in the wireless cell of BS d which is con-
nected to switch D. The table shown in Figure 13 rep-
resents the routing information maintained by switch
A. Such information is present at all switches in the
ATM network. Data coming out of host ml carries
VC1 (for BS a) which was assigned at connection set
up time. Switch A translates VC1 to VC2 after a look
up of its routing table and sends out this data through
port 2. Switch B further translates the header infor-
mation so that it now carries the VC3. Finally switch
D translates this to VC5 before passing it on to the
BS d and from there to host m2. On the return path,
m2 sends out data carrying the VC7. Suppose the
multicast group members for mobile host ml are base
stations a, b and c. Then, switch D translates VC7
to VC8 followed by translation to VC13 (and VC9
for multicast) at switch B. Finally switch A translates
VC13 to VC14 (and VC15 for multicast) for the mul-
ticast members a and 6. The onward transmission to
host ml is done by a. Now if host ml hands off to
base station 6, it will continue normal transmission
but with VC16, and continue receiving with VC15. It
is easy to see that allocating VCNs to all base stations
that are included in a multicast, will greatly ease the
handoff process.

The total delay experienced by an ATM cell over
the network can be characterized by two main compo-
nents [23, 22].

Tdelay — LJcons i L/v (2)
where Dcons represents the constant component and
DvaT represents the variable component of the delay.
DCon$ depends on the the physical delay of the medium
and the distance an ATM cell has to travel between
source and destination. Dvar on the other hand is rep-
resentative of the variation in queueing delays experi-
enced by different ATM cells over the same connection
in the network. Given the nature of delay variation
experienced by different ATM cells, it is easy to see
that different cells may experience different total de-
lays over the same connection. This variation in cell
delay is also referred to as jitter. [22] presents delay
and delay variation objectives for two-way session au-
dio and video services.

Crossover points within the network have signif-
icance when multiple connections are branching off
from a common stream. Each connection in a mul-
ticast operation need not start from the source but
may in fact find an intermediate switch that is han-
dling the connection for some other base station (See
Figure 11 for an example of crossover point location
during handoff.). We model the delay experienced by
an ATM cell over different routes starting from the
crossover point to be bounded by the times rmin and
Tmax- The delay variation for each connection may
now be viewed simply by a delay pipe as shown in
Figure 10. The tail of the pipe represents the entry
point of an ATM cell from the source.

38

It is evident from Figure 10 that at any given in-
l -■ stant for a multicast operation, the tail of each pipe
j'v contains the same ATM cell. However, due to differ-

ent delays experienced on different routes, the ATM
cells coming out from the heads of different pipes to
the respective base stations may not be the same.

SOURCE
T"a —

_
-

0*1*

HTMoA« "

Common

Puh

'•■'>::■■■?.'■

: .'.•'■ ':■"''':

CROSSOVER POINT

y
Origin of >v

Multicast x.

■ . -,.... i i -■:^y-<y>'

W- 1
BSV BSl

^

>r.<

r ..'

v.;-.

TION t

Sudan

I BwSw B«e
SUfKM

1

DES!

BuOW

WnlnUtk WnbolM

o •

W MH

I ̂ S>- tre 10: Delay Pipe 1! d DC lei

If the mobile host is to get consistent information
from a base station during and after handoffs, then we
have to make sure that the base stations involved in
the handoff procedure have corresponding ATM cells
in their buffers. Using this information and from the
discussion above, it follows that the buffer requirement
for ensuring that consistent information is present at
the participating base stations is given by

Buffersize > BWconn x (rmar - rmin) (3)

where BWconn is the bandwidth of the connection.
The ATM cell stream originating at the source con-

sists of cells arriving back to back with no way of dif-
ferentiating between two data cells. Of course, special
cells may be generated by setting the appropriate bits
in their headers, but this is not the case with data cells
in particular. Extensions to existing ATM protocols
to suit the mobile environment are discussed in [4].
However, our solution does not require any changes in
existing protocols but targets ATM switch fabrics to
achieve its goals.

In Figure 11 , BSl is the base station that is cur-
rently transmitting to the mobile host and BS2 is the
base station that is required to join the multicast. Af-
ter waiting for time t,taSger, BSl sends out a request
to the switch to include the base stations in the multi-
cast group of MH (gMH) in the multicast operation.
The upper bound on time taken for this is represented
by tsetup- Note that tsetup includes the time required
to

MH ..>:,

Figure 11: Handoff between Base Stations

• find the crossover point between BSl and the base
station farthest (in terms of number of interme-
diate switches) from it (BS2 in Figure 11),

• to update the multicast table entries in the
crossover switch and

• to send the newly allocated VCNs of each base
station to the mobile host.

As mentioned earlier, each time the mobile host per-
forms a handoff5 it is necessary to ensure that the se-
quence of frames being received from the old and new
base stations preserve their relative order. We propose
to overcome this problem by generating a control cell
at the crossover switch when a new multicast connec-
tion is admitted. This control cell will act as a refer-
ence point within the ATM cell stream to faciliatate
framing at each base station.

Implementation of our scheme will require minor
modifications at the switch level. We would require
the mobile host to maintain some kind of a record
of the last frame number correctly received from a
base station. A representative switch fabric that sup-
ports multicast (broadcast) [21] is shown in Figure 14.
The modifications proposed to this switch architec-
ture, however, are general enough to be applied to
any other existing architecture. Our purpose is only
to demonstrate how our scheme can be implemented.
In the original switch architecture, CP is responsible
for establishing both point-to-point and multicast con-
nections. CN makes copies of the incoming ATM cells
while the BGTs fill out the header information for each
ATM cell generated by the CN (for multicast) as well
as perform header translation for unicast cells. The
DN distributes traffic over its outlets as uniformally

6Note that both BSl and BS2 may not be connected to the
same ATM switch. In fact the crossover point could require a
number of hops to be made.

39

i

VH

VPI va

va

va
H bJ b3

Pi'ltMdTft Biu

0

cu>

HEC

tion time (r,„ne/i) required to ensure that duplication
in receiving ATM cells at the mobile host is limited to

Figure 12: Possible header of a Control Cell

as possible. For a comprehensive survey on switch ar-
chitectures see [23, 22].

The modifications required are shown with dashed
lines in Figure 14. On receiving a multicast join re-
quest, the CCGL will request the CN to generate an
empty cell of 48 bytes while the CP is setting up the
multicast connection. A BGT will then attach the
header of this control cell and appropriate values of
Cell Loss Priority (CLP) and Payload type (PT) bits
will be filled in. Note that the control cell will have
its CLP bit set to 0 (high priority) and PT bits (bl,
b2 and b3) may be set such that this control cell is
distinguished from ordinary data cells. The VPI and
VCI bits will be identical to their counterparts in the
data cells. Figure 12 depicts a possible header config-
uration for a control cell.

When BS1 receives this control packet, say cp
(which may be in the midst of regular cells all belong-
ing to a single frame), it continues its framing process
as before but sets a special flag in this frame before
it goes out to the mobile host. The next frame to be
transmitted will be numbered 1. The special flag that
was set in the last frame to be transmitted will cause
the mobile host to reset the frame counter it maintains
to 0. Note that the mobile host does so only after it
has received all previous frames from BS1 correctly.
This will ensure that there is no confusion if requests
for retransmission are generated by the mobile host
on account of erroneous transmission from BS1. On
receipt of cp, BS2 starts framing ATM cells (F cells
per frame) and also starts numbering them from 1.

When handoff actually takes place, the mobile host
will be able to specify the last frame completely re-
ceived from BS1 (say n) so that BS2 can can send
the next appropriate frame to the mobile host. If BS2
starts transmitting from frame n + 1 onwards, it may
result in one frame being completely duplicated at the
mobile host in the worst case. The extent of dupli-
cation depends on the position of cp relative to the
boundary of a frame being generated at BS1. Note
that this duplication could be as small as a single
ATM cell if the wireless protocol adopted transmits
one ATM cell at a time instead of a larger frame. In
any event loss of ATM cells will not occur.

Given below is the expression for the synchoniza-

at most one frame.

■L synch — tsetup + *-Tmax Tmfn + T^s2

+
BWWL

+ TWLL (4)

where BWWL is the bandwidth of the wireless link,
and TWLL is the latency of the wireless link. rmar rep-
resents the upper bound on the time taken for the first
frame to be reach BS2. An additional (rmar — rmt-n)
represents the upper bound on the time required to
flush out the ATM cells which was already received
by BS1 before cp arrived. The expressions 7^,2 and
■gw— represent the processing time required for a
frame at BS2 and the time required to transmit a
frame over the wireless link respectively.

Note that this analysis assumes that the delay as-
sociated with ATM cells reaching 551 is rm,-n, and
the delay for ATM cells reaching BS2 is rmax. This
analysis will produce the worst case value of T3ynch-

The actual stagger time available for this connec-
tion is now given by

^stagger — *s * syn ch (5)

where, ts is the stagger time determined for a partic-
ular QOS requirement of the user (see Section 3).

Note that the synchronization time presented above
and the chosen buffer size of (rmar - rmin) x BWconn
at each base station, will together ensure that the
frame being currently transmitted to the mobile host
is within the buffer for each base station in the multi-
cast.

The scheme presented here may result in the du-
plication of a single frame of ATM cells as explained
above. However, this duplication could be as small
as a single ATM cell if the wireless protocol adopted
transmits one ATM cell at a time instead of a larger
frame. It is possible to avoid any duplication if control
cells can be generated at the source itself. However,
this may require a change in the existing ATM proto-
cols. In this paper, we do not consider such a situa-
tion but it is evident that if such a change is brought
about in the future, then we will be able to perfectly
synchronize frame reception at the mobile host.

5 Conclusion
There are many user applications that do not re-

quire a "total" guarantee for disruption free service
but would also not tolerate very frequent disruptions.
An user will not not want to pay a high cost for such
applications. Thus if a multicast based approach is
used, the data packets will be multicast to the neigh-
boring wireless cells throughout the connection. This
will be prohibitively expensive. On the other hand, if
forwarding is used during handoffs, the user will see
a break in service during every handoff. With the
decreasing cell sizes, the user might see a disruption

40

ft)

m

t-:~

ft

P3

Ma

S

every 5 seconds (in picocellular environments). Pro-
posed in this paper is a novel staggered multicast ap-
proach which provides probabilistic guarantee for dis-
ruption free service. The main advantage of the stag-
gered multicast approach is that it partially provides
the benefits of the multicast approach and also pro-
vides the much required savings in the static network
bandwidth.

In summary, the main features of the staggered
multicast approach are the following:

• The network bandwidth usage is significantly re-
duced.

• A probabilistic guarantee for disruption free ser-
vice is provided.

Using the ATM switch modifications as suggested in
the implementation section of the paper, we can en-
sure lossless data delivery to the end user.

We are currently investigating staggered multicast
schemes where the stagger time is determined dynam-
ically during the handoff process. We believe that a
dynamic stagger will more provide a much better per-
formance than the static stagger scheme proposed in
this paper. On the other hand, if there are sophisti-
cated wireless adapters available that can provide an
intermediate signal level which will notify the mobile
host that a handoff will soon occur, then the multicast
initiation could be staggered till this point.

References
[1] R. Ghai and S. Singh, "An Architecture and Com-

munication Protocol for Picocellular Networks,"
IEEE Personal Communications Magazine, pp.
36-46, Vol.l(3), 1994.

[2] K. Keeton et.al., "Providing connection-oriented
network services to mobile hosts," Proc. of the
USENIX Symposium on Mobile and Location-
Independent Computing, Cambridge, Massachus-
sets, August 1993.

[3] Anthony S Acampora, Mahmoud Nagshineh,
"An Architecture and Methodology for Mobile-
Executed Handoff in cellular ATM Networks,"
IEEE Journal on Selected Areas on Communica-
tions, October, 1994.

[4] D Raychauduri and N Wilson, "ATM Based Trans-
port Architecture for Multiservices Wireless Per-
sonal Communication Networks." IEEE Journal
on Selected Areas on Communications, October
1994.

[5] R. Thomas, H. Gilbert, and G. Mazziotto, "In-
fluence of the Mobile Station on the Performance
of a Radio Mobile Cellular Network," Proc. 3rd
Nordic Sem., paper 9.4, Copenhagen, Denmark,
Sep., 1988.

[6] A. Papoulis, "Probability, Random» Variables, and
Stochastic Processes," Third Edition, McGraw-
Hill,'Inc.

[7] E. Kreyszig, "Advanced Engineering Mathemat-
ics," Fifth Edition, John Wiley & Sons, Inc.

[8] W. C. Y. Lee, Mobile Cellular Communications
Systems, McGraw Hill, 1989.

[9] D. M. Balston and R. C. V. Macario, Cellular Ra-
dio Systems, Artech House, 1994.

[10] S. Mohan and R. Jain, "Two User Location
Strategies for Personal Communication Services,"
IEEE Personal Communications, Vol. 1, No 1
1994.

[11] P. Krishna, N. H. Vaidya and D. K. Pradhan,
"Location Management in Distributed Mobile En-
vironments," Proc. of the Third Intl. Conf. on Par-
allel and Distributed Information Systems, pp. 81-
89, Sep. 1994.

[12] P. Krishna, N. H. Vaidya and D. K. Pradhan, "Ef-
ficient Location Management in Mobile Wireless
Networks," Technical Report, Dept. of Computer
Science, Texas A&M University, Feb., 1995.

[13] C. Lo and R. Wolff, "Estimated Network
Database Transaction Volume to Support Wireless
Personal Data Communications Applications,"
Proc. of Intl. Conf. Communications, May, 1993.

[14] Pravin Bhagwat and Charles. E. Perkins, "A Mo-
bile Networking System based on Internet Proto-
col (IP)," Proc. of the USENIX Symposium on Mo-
bile and Location-Independent Computing, Cam-
bridge, Massachussets, August 1993.

[15] J. loannidis et. al., "IP-based Protocols for Mo-
bile Internetworking," Proc. of ACM SIGCOMM,
1991.

[16] J. loannidis and G. Q. Maguire Jr., "The Design
and Implementation of a Mobile Internetworking,"
Proc. of Winter USENIX, Jan. 1993.

[17] Charles Perkins, "Providing Continuous Network
Access to Mobile Hosts Using TCP/IP," Joint Eu-
ropean Networking Conference, May 1993.

[18] F. Teraoka, Y. Yokote and M. Tokoro, "A
Network Architecture Providing Host Migration
Transparency," Proc. ACM SIGCOMM Sympo-
sium on Communication, Architectures and Pro-
tocols, 1991.

[19] C. Partridge, "Gigabit Networking," Addison
Wesley, 1993.

[20] International Telecommunication Union Recom-
mendation 1.311 (03/93)

[21] J S Turner, "Design of a broadcast Packet switch-
ing network," IEEE Transactions on Communica-
tions, vol. 36, pp. 734-743, June 1988.

[22] Raif 0 Onvural, "Asynchronous Transfer Mode
Networks : Performance Issues," Artech House,
1993.

41

[23] Martin de Prycker, "Asynchronous Transfer
Mode, solution for broadband ISDN," Ellis Hor-
wood 1991.

Appendix 1 : Two Dimensional Random
Walk Model

We will first discuss the one dimensional random
walk model as explained in [6], and then extend it to
two dimensions.

Let the position of the user after t units of time be
x{t). Let the one dimension be the X axis. In the one
dimension random walk model, every T units of time,
the user tosses a coin, and based on the result the user
either decides to go in the positive X direction or the
negative X direction. For example, upon a head the
user decides to take one step in the positive X direc-
tion, and upon a tail the user decides to take one step
in the negative X direction. For the purpose of this
discussion, we will assume that the step size if small
enough so that a step in any other direction can be
approximated by one of the four directions mentioned
here.

The important parameters in the modelare the
time interval between two tosses T and the length of
the step s. It is shown in [6] that for t > T, x{t) is
normally distributed with zero mean and variance at
as shown in the following equation.

Converting into polar coordinates (r, 6) we get,

,2* ,fi
Prob(r(t) <R) = / /(r, 6, t) J dB dr

Jo Jo

where J is Jacob ian [7], which is given as follows:

J =
9{x,y)
d(r,0)

Replacing J, we get,

cosO —rsinO
sinö rcosd

fR T
Prob{r(t) < R) = / —e-^dr

Jo at

Therefore,

Prob(r(t)<R)=l-e-&r (7)

/(*,<) =

rs:'r m

y/2Trat
(6)

where a = s2/T. It is assumed that the user starts
from the origin. It is also assumed that the successive
steps are independent of each other.

We can extend this analysis to two dimensional ran-
dom walk model. Let the two dimensions be X and Y.
Let positive X axis represent the east (E) direction,
and the positive Y axis represent the north (N) direc-
tion. In such a model, the user tosses two coins every
T seconds. Based on the resulting head-tail combi-
nation the user will decide to take a step in a specific
direction. For example, a head-head results in the user
taking a step in the north-east direction, a head-tail
results in the user taking a step in the north-west di-
rection, a tail-head results in the user taking a step in
the south-east direction, and a tail-tail results in the
user taking a step in the south-west direction.

We assume that the movement in the X-dimension
is independent of the movement in the Y-dimension,
and that the distribution functions are identical for
both the dimensions. Thus, the joint density of the
two dimensional random walk will be given as follows:

!v*"? f(*,y,t)
2itat

e 2o,<

Let us assume circular cells of radius R units. At
time i, the user will be in the same cell if x(t) < R
and y(t) < R. Therefore,

R rR
Prob(x(t) < R, y(t) < R) = f f /(x, y, t) dx dy

Jo Jo

42

<-■'<•..

VC13

va

B VC9

VCI2
1 „ ' 2 ^

A
3 4 3 6

C

VCNin PORT in VCNo« PORT oat

16

3

5

2

2 1

13 2 14.15 4.6

Routing Information
For Switch A

D ATM Switch

VC-Virtual Circuit #

Figure 13: Dynamic Virtual Connection Tree

Input Controllers

J7P Ports1

t
Input Buffers /

SWTTCH

FABRIC

CP

CN

ICCGL

' t

j

■

-OH}

Multicast Join Request

O/P Controllers

0/P Ports

Buffers

CP: Connection Processor
CN: Copy Network

DN: Distribution Network

RN: Routing Network

BGT: Broadcast and Group

Translator

; CCGL: Control Cell Generation

I Logic

Figure 14: Switch Fabric modifications

43

IV. Algorithms for Loadbalancing

44

1108 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.6, NO. 10. OCTOBER 1995

Processor Allocation in Hypercube
Multicomputer: Fast and Efficient Strategies

for Cubic and Noncubic Allocation
Debendra Das Sharma and Dhiraj K. Pradhan, Fellow, IEEE

IP' Pi
SB

Abstract—A new approach for dynamic processor allocation in
hypercube multicomputers which supports a multi-user environ-
ment is proposed. A dynamic binary tree is used for processor
allocation along with an array of free lists. Two algorithms are
proposed based on this approach, capable of efficiently handling
cubic as well as noncubic allocation. Time complexities for both
allocation and deallocation are shown to be polynomial, a signifi-
cant improvement over the existing exponential and even super-
exponential algorithms. Unlike existing schemes, the proposed
strategies are best-fit strategies within their search space. Simu-
lation results indicate that the proposed strategies outperform the
existing ones in terms or parameters such as average delay in
honoring a request, average allocation time, average deallocation
time, and memory overhead.

Index Terms—Cubic allocation, deallocation, dynamic binary
tree, fragmentation, hypercube, noncubic allocation.

I. INTRODUCTION

IN an MIMD hypercube supporting multiple users, an incom-
ing task, is allocated the required number of processors for

execution. Upon completion of the task, these processors that
were assigned to the task are released, for subsequent alloca-
tion; this process is known as "deallocation". Several proces-
sor allocation schemes have been proposed in the literature
[I]. [3], [5], [6], [7], [8], [13], [15], [16], [18], [24]. Most of
these, including nCX, the host operating system of the nCUBE
series [21], assume the number of processors as a power of 2.
Many applications, though, do not necessarily require a com-
plete subcube for execution [14], [23],. [24], such as those re-
quiring embedding of complete and incomplete binary tree,
rectangular grid in hypercubes, solving a large number of non-
linear equations, etc.

Implementing .a complete subcube allocation strategy has
the drawback of allocating extra processors to the tasks to ob-
tain a full subcube. Known as "internal fragmentation," this
translates to both lower computation power as well as higher
waiting times for subsequent tasks. Those strategies for non-
cubic allocation proposed in [15], [16], [24], have extremely
high time complexities for allocation and deallocation (Table
II), perhaps unsuitable for high dimensional hypercubes.

Manuscript received July 9, 1993; revised July 5, 1994.
D. Das Sharma is with the General Systems Lab, Hewlett-Packard

Company, Roseville. CA 95747-5596; e-mail: dsharma@hprpcd.rose.hp.com.
D.K. Pradhan is with the Department of Computer Science, Texas A&M

University, College Station, TX 77843-3112; e-mail: pradhan@cs.tamu.edu.
1EEECS Log Number D95040.

An efficient allocation scheme handles both cubic and
noncubic allocation while exhibiting low time complexities
for both allocation and deallocation, low memory overhead,
high processor utilization, and low waiting times for incom-
ing tasks. Two such schemes are presented here which pos-
sess the lowest time complexities and lowest memory over-
head among existing schemes, while exhibiting superior per-
formance.

A dynamic binary tree is used to represent the various sub-
cubes in the proposed schemes. The dynamic binary tree
maintains a very compact representation, which results in an
extremely low memory overhead, shown in Section V. In-
complete subcubes are maintained explicitly in the dynamic
binary tree. Representatives of the free incomplete subcubes
are maintained in the form of an AVL tree associated with the
highest dimension subcube in the incomplete subcube. Both
proposed algorithms have polynomial time complexities
(0(n2) and 0(n3), respectively) for allocation and deallocation-
orders of magnitude improvement over existing super-
exponential algorithms, as depicted in Tables I and II. Al-
though the proposed schemes lack complete subcube recogni-
tion capability, our incomplete subcube recognition capability
is better than most of the existing schemes (Table II).

Simulation results demonstrate that the proposed schemes
outperform the existing strategies for parameters like average
waiting delay, variance in waiting delay, and average turn-
around time for a wide range of workloads and dimensions of
hypercube systems, while possessing the lowest overheads in
allocation and deallocation times and amount of memory re-
quired. This effect is even more prominent as the dimension of
the hypercube increases.

The paper is organized as follows: The following section
presents pertinent preliminaries. A discussion of the existing
methods is presented in Section III. Our approach is delineated
in Section IV, including comparison against existing schemes.
Section V provides simulation results, comparing the perform-
ance of our strategy against certain existing ones. The conclu-
sion is contained in Section VI.

II. PRELIMINARIES

We consider an n-dimensional hypercube where the indi-
vidual nodes or subcubes are represented by an n-bit string of
ternary symbols from Z = {0, \, x], where x denotes a "don't
care." For example, in a 2-dimensional hypercube Ix denotes
the nodes 10 and 11, and xx denotes all the four nodes.

45

DAS SHARMA AND PRADHAN: PROCESSOR ALLOCATION IN HYPERCUBE MULTICOMPUTERS: FAST AND EFFICIENT STRATEGIES 1109

('.■

■''-:

DEFINITION l. The Hamming Distance [15] between two sub-

cubes a = axa2 ... an and b = bxb2 ... bn; where a; e Z and

b-, e I for all i e [1, «]; can be defined as H(a, b) =

EiLi/ifa. fr/), where /t(a;, £>,-) = 1 if a, * 6, and a(, fc,- e {0, 1},
and 0 otherwise. For example, //(OOx, lxc) = 1 and
#(Lc0,;c0;c)=:0.

DEFINITION 2. The Exact Distance [15] between the two sub-
cubes a and b above, can be defined as E(a, b) = Z"=,e(a;, bj)
where e{ah £,) = 0 if at = bs and 1 otherwise. For example,
£(Ocl, lOx) = 3 whereas H(0x\, lOx) = 1.

DEFINITION 3. An Incomplete Subcube (ISC) S can be defined
as follows:

1) It consists of a group of disjoint subcubes {Su S2,..., Sm),
(1 < m < n), with dimensions du d2, ..., dm, respectively,
(dl>d2>...>dm)1.

2) H(Sh Sj) = 1 for all 1 < ij < m , i *j.
3) E(Sh Sj) = di -dj+l for all 1 < / <j < m.

dt is the dimension and d = Z^02'/' is the size of the ISC S.
5, is called the head of the ISC S.

EXAMPLE 1. The subcubes {\xxx, OOxx, 010*} form a 11-node
ISC (i.e., size = 11) of dimension 3 and lxcc is the head.
But subcubes (OOxr, jrlOO} do not form an ISC as the exact
distance between them is 4 instead of 2 — 1 + 1 = 2; al-
though the hamming distance is 1.

Essentially, an ISC consists of subcubes such that the
hamming distance between any two subcubes is 1 and any
higher dimensional subcube has xs in the same positions that
any other lower dimensional subcube has. This ensures that all
the processors in an ISC lie within the next higher dimensional
subcube, which minimizes the extent to which tasks can have
overlapping links.

DEFINITION 4. A binary representation of a hypercube is a
dynamic binary tree, where nodes in level i denote a sub-
cube of dimension n - i. Any node that is allocated to one
task or a free node does not have any descendants. The bi-
nary representation of nodes is as shown in Fig. 1. For ex-
ample, the root node (level 0) represents the entire hyper-
cube, its left child denotes the subcube Oxxx, right child de-
notes the subcube lxcc, and so on. Node Ixxx is allocated to
a task (along with node 0000) and hence does not have any
descendants. Node Olxc is free, and does not have any de-
scendants. This helps us maintain a space-efficient represen-
tation of the hypercube.

DEFINITION 5. 'A Sibling generated Incomplete SubCube
(SISC) is an incomplete subcube consisting of the subcubes
{S\, S2,..., Sm) (1 < m < n), arranged in the decreasing order
of dimensions, such that the sibling of S; is the common an-
cestor of all the subcubes [SM, Si+2, ..., 5m}, for all
/ e [1, m - 1]; in the binary tree representation. The
dimension of the SISC is the dimension of S| and the total
number of processors define its size.

Fig. 1. Dynamic binary tree representation.

EXAMPLE 2. (Fig. 2) Nodes {lxccccr, OOxuxc, OllOxor,
0111 lxc, OlllOOx 0111011} form a SISC (say S), as
Oxcxcxc, the sibling of subcube lxcxcxc, is the ancestor of all
the lower dimensional subcubes (OOxcxcc, OllOxcc, etc.);
Olxccxc, the sibling of the node OOxcxcc, is the ancestor of all
the lower dimensional subcubes (01 lOxcc, Olli lxc, etc.), and
so on. The dimension of this SISC is 6 and its size is 64 + 32
+ 8 + 4 + 2+1 = 111. Similarly, nodes {OlOlxcx, OlOOOxc,
010010*} form a SISC (say 50 in the tree.

OlOOOx»'

OIOOIOx 01001Ix

O1II0I0 0111011

Fig. 2. Incomplete subcube representation.

I. For the rest of this paper, it will be assumed that the subcubes are ar-
rnnfcd in the decreasing order of dimensions, unless otherwise mentioned 46

THEOREM 1. SISC is an ISC.

The proof appears in the appendix.

DEFINITION 6. Maximal Set of Incomplete Subcubes (MSIS)
is a set of free, disjoint ISCs that is greater than or equal to
all other sets of free disjoint ISCs of the same set of free

1110 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL.6, NO. 10. OCTOBER 1995

i§

nodes. For example, in Fig. 2, ISCs {lxxxxxx, OOxxxxx,
OlOlxxx, OlOOOxx, OlOOlOx} (size 110) and {OllOxxx,
Ollllxx, OlllOOx, 0111011} (size 15) do not form an
MSIS because 5 and S" of the previous example form an
MSIS with sizes 111 and 14, respectively.

DEFINITION 7. Physical Fragmentation occurs when a sufficient
number of free processors can not form an incomplete sub-
cube of the required size. Fig. 3a illustrates an example where
the three free nodes do not form an incomplete subcube of
size 3. Throughout this paper a shaded node will indicate an
allocated subcube; an unshaded one, a free subcube. The
physical fragmentation problem is similar to that of memory
fragmentation and may result from the sequence of incoming
and outgoing tasks or simply a "bad" allocation (Example 3).

Fragmentation due to a bad allocation

(a)

no

100 101

No fragmentation

(b)

Fig. 3. Allocation in a 3-dimensional hypercube.

EXAMPLE 3. Consider the 3-dimensional hypercube shown in
Fig. 3. If an incoming request requiring 3 nodes is allocated
{lxl, 011} (Fig: 3a) instead of {lOx, 110} (Fig. 3b), a sub-
sequent request for a 3-node incomplete subcube cannot be
allocated. Similarly, if an incoming request of dimension 1
is allocated the subcube lOx instead of 1x0, a subsequent
request for a 2-dimensionaI subcube has to wait.

DEFINITION 8. Virtual Fragmentation occurs when an alloca-
tion policy fails to recognize an existing incomplete sub-
cube and causes an incoming task to wait. For example, if
an allocation policy fails to reconize the 3-node free ISC
(Oxl, 111) in Fig. 3b, ah incoming request requiring three
processors has to wait.

III. EXISTING ALLOCATION SCHEMES

The existing allocation strategies may be broadly classified
into two categories.

• Bit mapping strategies such as Buddy [18], Gray Code
(GC) [3], [5], Modified Buddy [1], and Tree Collapsing
(TC) [6].

• List type Strategies such as the Maximal Set of Subcubes
(MSS) [13], Free List (FL) [15], [16], and Prime-Cube
Graph (PC-Graph) [24].

The bit mapping strategies maintain 2" bits, each represent-
ing the (un)availability of the corresponding processor. These
bits are searched to determine the availability of a subcube,
and the first available subcube is allocated. Noncubic alloca-
tion may be handled by searching for and allocating only the
required number of processors instead of a subcube. The
problems associated with these schemes are the physical frag-
mentation due to their first-fit nature and the virtual fragmen-
tation due to their incomplete recognition capability (both for
cubic and noncubic case, as illustrated in Tables I and II).
These limitations may result in degraded performance in terms
of the average waiting delay [12]. In addition, the bit-mapping
strategies have exponential time complexities for allocation
and deallocation (Tables I and II). Thus, they may not be suit-
able for processor allocation in hypercubes of large sizes.

The list type strategies maintain a list, of the free subcubes in
the system for subcube allocation. They have complete sub-
cube recognition capability and are best-fit strategies for sub-
cube allocation. However, some of them do not possess com-
plete ISC recognition capability (Table II). The use of heuris-
tics for both allocation and deallocation may potentially cause
both physical and virtual fragmentation, even for cubic alloca-
tion, as illustrated in [7], [12]. The problems are worse for
noncubic allocation. Recognizing ISCs in the list type strate-
gies is non-trivial, as the relationship among free subcubes in
the various lists has to be examined. This may involve super-
exponential time complexity as there can be 0(2") free sub-
cubes and 0(n) free subcubes of distinct dimensions can form
an ISC. This time complexity may further increase if we try to
allocate the "best" ISC in order to reduce physical fragmenta-
tion and reducing common links between tasks [12]. This is
probably the reason the list type strategies are first-fit for non-
cubic allocation (Table II). This results in degraded perform-
ance, as illustrated in Section V. A detailed comparison of the
various strategies appears in [12].

We define the goal of an allocation algorithm to be able to
maintain the MSIS after every allocation and deallocation.
Maintaining the MSIS after every allocation and deallocation
will involve the undesirable effect of super-exponential time
complexities due to the inherent nature of the problem. Thus,

47

DAS SHARMA AND PRADHAN: PROCESSOR ALLOCATION IN HYPERCUBE MULTICOMPUTERS: FAST AND EFFICIENT STRATEGIES im

»*> ->->-, .' (AVL- Tree
236 237 244 245/ with Msc* list)

430 431

818 819

Fig. 4. Representation of ISCs in the isc lists by lightly shaded nodes arranged in the form of an AVL tree.

9

8

'--. • 7

6

""■-,

-5

63
4

3

c
ist)

2

1

0

i---.SK

I

we use a strategy that recognizes ISCs of type SISC only and
maintain the MSIS of ISCs of type SISC only. The allocation
and deallocation time complexities of the proposed strategies
is polynomial. Because they are best-fit strategies, the pro-
posed allocation schemes reduce physical fragmentation sig-
nificantly. They exhaustively coalesce a released subcube if it
is recognizable by the strategy. In addition, the proposed
schemes are capable of recognizing the adjacency of up to n
subcubes in the tree, unlike free list and prime cube; the only
two noncubic allocation strategies in the literature. We also do
not incur the penalty of higher job turn-around time due to
reduced bisection bandwidth or shared links, unlike the prime-
cube approach [12], as we allocate only ISCs, contained within
the next higher dimensional subcube, instead of any arbitrary
noncubic structure. Although the proposed strategies do not
have complete recognition ability for cubic as well as noncubic
allocations, simulation results indicate that the strategies ex-
hibit much better performance than the existing strategies.
Thus, by limiting our subcube (and hence the ISC) recognition
capability we obtain polynomial time algorithms whose per-
formance and even the ISC recognition capability exceed that
of the existing strategies; as illustrated later.

IV. THE PROPOSED STRATEGY

In the proposed strategy, a dynamic binary tree along with
an array of free lists is used for processor allocation. The
nodes in the tree represent various subcubes. Free subcubes
may join to form an ISC of type SISC, as explained in Section
II. For the rest of this section, "ISC" refers to SISC only and
"MSIS" refers to MSIS of type SISC only.

Incomplete subcubes are represented ifi the algorithm by a
bidirectional link between two adjacent subcubes; the sub-
cubes being arranged in the decreasing order of their dimen-
sions. The highest dimensional subcube is the head of the ISC.
Each free ISC is represented by a separate type of node
(shown as lightly shaded nodes in Fig. 4) which stores the
number of processors and the address of the head of the ISC it

represents. Representatives of all the free ISCs are kept in an
array of lists called "isc," which has n + \ entries in it. Repre-
sentatives of all the free ISCs of dimension i are arranged as a
height-balanced AVL tree [19], the key being the number of
processors in the ISC each node represents. isc[i] points to the
root of the AVL tree associated with the ISCs of dimension i.
The AVL tree is a height-balanced binary tree, where the dif-
ference of the depths of the right and left subtrees of any node
is at most one [19]. The AVL tree ensures that search, insert
and delete operations can be done in 0{log{k)) time [19],
where k is the number of ISCs of dimension i (k = 0(2""')).
This, in turn, ensures polynomial time complexities of the pro-
posed algorithms.

EXAMPLE 4. The dynamic binary tree represented in Fig. 4 has
five ISCs. The ISC formed by the nodes {4,10,23,44} has 240
processors and is of dimension 7. It is the only ISC of dimen-
sion 7. Hence, isc[7] points to the representative node of the
ISC (the only node in that AVL tree). The rest of the ISCs in the
dynamic binary tree are all of dimension 5 with 34, 36, 60, and
63 processors in them. Thus, the AVL tree associated with the
dimension 5 has four entries in it, as illustrated in the figure.
Each representative node contains the number of processors,
and the address of the head of the ISC it represents (indicated
by dotted lines in the figure) along with the necessary informa-
tion to maintain the height balanced AVL tree. The rest of the
entries in isc are set to NULL

A. Noncubic Allocation

In this subsection, we present two algorithms for noncubic
allocation that work efficiently for cubic allocation as well.
The algorithms proposed in this subsection will use the data
structure described above.

A. I. Algorithm 1

In this approach, each node (N) in the dynamic binary tree
maintains a pointer to the head of the largest ISC (denoted as
"iscptr") beneath N (all the subcubes in this largest ISC are

48

1112 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.6. NO. 10, OCTOBER 1995

descendants of N) along with the number of processors in the
ISC (denoted as "iscnodes"). For instance, in Fig. 4, the iscptr
entry of node 3 will point to node 24, the head of an ISC with
63 processors. Thus, its iscnodes entry is 63. A node allocated
to one task, a free node and a nonleaf node, all of whose de-
scendants are allocated, will have the iscptr set to NULL and
iscnodes set to 0.

During allocation, the ISC S, with the minimum number of
processors that can satisfy the request, is chosen for allocation.
The representative of this ISC is removed from its correspond-
ing AVL tree (and hence the isc list). Subcubes of the required
dimensions are allocated to the incoming task (/,) by using this
ISC. The free subcubes of 5, that were not used for allocation
to /;, are released to form one (or two) ISC(s) and added to the
corresponding isc list(s). It should be noted that every inser-
tion/deletion of an ISC to/from an isc list (AVL tree) is ac-
companied by updating the iscptr (and iscnodes) entry of the
ancestor(s) of the head of the ISC.

A formal description of the allocation algorithm is de-
scribed below followed by examples describing the various
steps of the allocation procedure. In this algorithm
allocatedlist maintains the list of subcubes to be allocated to
the task after execution of the algorithm, newlist maintains the
list of higher dimensional subcubes that are not required for
the current allocation in progress, brokenlist maintains the list
of free subcubes generated after allocating subcubes to the
request /,• by fragmenting a higher dimensional subcube.

A. La. Allocation

Step 1. Form the dimensions £>,, D2,..., Dm of the subcubes
required to satisfy the task /, requesting D processors; arranged
in the decreasing order.

Step 2. Search the isc lists from isc[D,] onwards and choose
the ISC S = {Si, S2l.... S,} with the minimum number of proc-
essors that can satisfy request l, (let the dimensions of sub-
cubes in S be du d2, ..., d„ respectively). If no such ISC is
found, keep the request in the waiting queue and skip the re-
maining steps.

[The allocation process tries to allocate the subcubes of di-
mensions D|, D2 Dm, respectively, (in that order) from the
free subcubes Su S2, S, (in that order). S,- denotes the sub-
cube in S that is currently being considered for allocating sub-
cubes of dimensions DJt D^ , Dm.]

Step 3. / = j = 1. allocatedlist = newlist = brokenlist =
NULL. (Initialization).

[d-, is the highest dimension subcube in S that may be allo-
cated to Ij. Dj is the highest dimension subcube in /, that is be-
ing considered for allocation. The following steps illustrate the
various scenarios that may arise based on the relationship be-
tween di and D,, Dj+],..., Dm.]

Step 4. If di > Dj and the available subcubes {SM, Si+2,.... S,}
of 5 can satisfy the request for the subcubes of dimensions D},
Dj+[,..., Dm yet to be allocated:

Remove St from 5 and append it to newlist. i = i + 1. Go To
Step 4. (Example 5)

(In this Step, subcube 5, need not be allocated, since the
lower dimensional subcubes of 5 can satisfy the request.)

Step 5. If dj = Df {i.e., S-, has to be allocated)

1) Append S, to allocatedlist after removing it from S
(Example 5).j=j+l.

2) If j = m + 1 (all subcubes of the required dimen-
sions allocated):
• list = {SM,.... S,} and Go To Step 7. (Step 7 releases

the free subcubes in list and newlist to the system.
These subcubes were not used in the allocation proc-
ess.)

• Allocate the subcubes in allocatedlist to /,. Skip the
remaining steps.

3) If the sibling S,' of 5,- has enough processors in the maxi-
mal ISC beneath it (denoted as {S,, S\,.... 5;}) to ac-
commodate subcubes of the remaining dimensions Dy+i,
Dj+2,.... Dm, do the following: (Example 6)

(trying to see if ISCs of lower sizes can be used instead of
the remaining subcubes in 5)

a) Remove the ISC headed by S, from the isc list and up-
date its ancestors.

b) list = [SM, SM,.., S,).S= {<?,, S2,.... S,). i = 1. Go to
Step 7. (Example 7)

(Step 7 tries to form maximal ISC(s) out of unused subcubes
of previous ISC S.)
Else: i = i+l.
4) Go to Step 4.

Step 6. If di > Df. (Now subcube Si has to be used to satisfy
the remaining subcube requests of dimensions Dj, DJ+I, Dm

by fragmenting 5,- (Example 8).)

1) Form the two children of 5; in the dynamic binary tree (of
1 dimension less).

2) If the dimension of the children = Df.
a) Allocate the right child to /,• by appending it to
allocatedlist.
b) Si = left child of S,.
c)j=j+l.

Else:
[Since the dimension of node S,'s children is greater than Dj
(the highest dimensional subcube yet to be allocated); one
of Si's children needs to be further fragmented to allocate a
subcube of dimension Dj. The right child of S,- would be
used to allocate the remaining requests and the left child
would be eventually released.]

a) Append the left child to brokenlist (to be released
later).
b) Si = right child of S; (to be used for allocation).

3) If j < m Go To Step 6.1. (Continue allocation as more
subcube(s) are yet to be allocated.)

4) If the number of processors in brokenlist is greater than
thatin{5,+,,51+2,...}:

(The free subcubes remaining after fragmenting the original
node Si in the ISC S have more processors than the remain-
ing free subcubes in 5 (i.e., Si+I, Si+2, ..., S,). Hence, broken-
list is chosen to combine with higher dimensional free sub-
cubes instead of the remaining free subcubes in S.)

49

DAS SHARMA AND PRADHAN: PROCESSOR ALLOCATION IN HYPERCUBE MULTICOMPUTERS: FAST AND EFFICIENT STRATEGIES 1113

A*?

• Insert {SM, SM, •— St] to the appropriate isc list and
update the ancestors (i.e., their iscptr and iscnodes en-
tries) of SM.

• list = brokenlist (to combine with higher dimensional
subcubes, if possible).

Else:

[Since the number of processors in the ISC S {[SM, S1+2,..., S,})
is greater than those in brokenlist, the ISC S is chosen to
combine with higher dimensional free subcubes, if possible.]

• Insert brokenlist to the appropriate isc list and update
the ancestors of the highest dimensional subcube in
brokenlist.

• list - {SM, S;+1, ...} (to combine with higher dimen-
sional subcubes, if possible)

5) Go to Step 7.
6) Allocate the subcubes in allocatedlist to the task /,-. Skip

the remaining steps.

(Step 7 is used by Steps 5 and 6 only. It forms maximal
ISCs out of the free subcubes in "list" and "newlisf and
returns to the point from which it was invoked.)

Step 7.

\)lfnewlist is empty: [No more free (higher dimensional)
subcubes with which the (lower dimensional) subcubes in
"list" can combine to form a higher dimensional ISC]

• Insert the subcubes in list to the appropriate isc list.
• Update the ancestors of its head.
• RETURN.

2) Let L be the lowest dimension subcube of newlist and Ls

be its sibling.
3) Remove L from newlist.
4) If the maximal ISC beneath Ls (say /,) has more proces-

sors than list:
(In this case, the maximal ISC beneath Ls (i.e., U) should
combine with L instead of the ISC in list, as that would
yield a maximal ISC. Hence, /, is removed from the "isc"
list and combined with L, whereas the ISC in list is added to
the appropriate "isc" list)

• Insert the subcubes in list to the appropriate isc list and
update the ancestors of its head.

• Remove /, from the isc list and update the ancestors of
its head.

• list = [L] append {/,}.

Else: Add L to the head of list (Example 7).
5) Go to Step 7.1.

EXAMPLE 5. Consider the scenario of Fig. 5a. Suppose we
have a request for 149 processors (dimensions 7, 4, 2, 0)
(Step 1). The ISC headed by node no. 2 (S = [2, 7, 25, 48,
99}) is selected from isc[&] as isc[l] is empty (Step 2). The
subcube no. 2 of dimension 8 in S need not be allocated as
the rest of the subcubes in S can satisfy the request (Step 4).
Following Step 5.1, Node 7, however, needs to be allocated
(kept in allocatedlist) whereas node 2 will be released later
(goes to newlist).

EXAMPLE 6. (Continuing from Example 5) The sibling of the
allocated node 7 (node 6) is checked to see if the maximal
ISC beneath it (the ISC {55, 109, 217} with 28 processors)
can satisfy the remaining dimensions 4, 2, and 0. Since, the
ISC headed by 55 can accommodate the remaining sub-
cubes, we use that instead of the subcubes {25, 48, 99} in
an attempt to preserve higher ISCs (Fig. 5b). (Now list =
{25, 48, 99} and S = {55, 109, 217}. This constitutes Step
5.3.) However, the choice of ISC {53, 210, 847} would
have maintained the MSIS after allocation. This drawback
arises as nodes do not store all the ISCs beneath them to
make the "best" choice. The second algorithm overcomes
this shortcoming by maintaining all the ISCs beneath a node
in the form of an AVL tree instead of maintaining the
maximal ISC only.

It should be noted that the maximal ISC beneath the sibling
of an allocated subcube will have fewer processors than the
remaining subcubes in S, as the ISC with more processors al-
ways combines with higher dimensional free subcubes to form
a larger ISC.

EXAMPLE 7. (Continued from Example 6) (Fig. 5b) After the
ISC headed by 55 is chosen for allocation, the free subcubes
of the current ISC (headed by 2) are to be deallocated.
These free subcubes belong to two categories: those higher
dimensional subcubes of S that were not used in allocation
(kept in newlist during Step 4; here newlist = {2}) and those
lower dimensional subcubes (stored in list) that were not
used during allocation either because the allocation process
was complete (Step 5.2) or because a smaller ISC was
available (Step 5.3) (here list = {25, 48, 99}). After remov-
ing the ISC headed by 55 from isc[4], the sibling of node 2
(which is the lowest dimension subcube in newlist) is
checked for its maximal ISC. In this case, the current ISC
(list) has more numbers of processors than the maximal ISC
beneath 3 (headed by 53 with 21 processors). Thus, we add
node 2 to the remaining free subcubes of the current ISC
and add {2, 25, 48, 99} in the free list of isc[&] and update
the ancestors of 2 (Step 7 followed by Step 5.3). If the ISC
headed by 53 had more processors than list, it would have
been removed from its isc list and combined with node 2 to
form a new ISC and list would have been added to the cor-
responding isc list (part of Step 7.4).

EXAMPLE 8. (Continued from Example 7) The ISC 5 =
{55, 109, 217} is now used to allocate the remaining sub-
cubes of dimensions 4, 2, and 0 to /;. Node 55 of dimension
4 will be allocated (Fig. 5c). Node 109 of dimension 3
needs to be fragmented (Step 6) to allocate the remaining 5
processors to /; (Fig. 5d). Nodes 219 and 875 generated
from node 109 are allocated to /;, whereas the unused nodes
436 and 874 need to be released and are stored in brokenlist
(brokenlist = {436, 874}). Since the unallocated node 217
from 5 has more processors than brokenlist (Step 6.4), the
latter simply joins isc [1] whereas the former is chosen to
combine with higher dimensional subcubes, if possible
(Step 7). However, in this case, node 217 does not have
enough processors to join node 2 and is kept in isc{2].

50

£2

1114 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL.6. NO. 10. OCTOBER 1995

ISC for allocation -*\ lAJc 9

■^QTS^JXM? —^
21 74UJU 2

0^2TQ 5
^^„.^L .55

\\ •0#Q;>°oLr '•- 3
*"V 98 99 10^'X X Ä >A 109

28V X —-'*&_,„
■"" -^ x 216 217

«46 847

26,-

, 25

98 99 104.

210

rA-^v allocated '"*\<___

O^ 312

9

-6

Q53 OQs • "»-«-- -4

\J ^~y\10* »
Q§0 ISC for
jT\V\ 217 allocation
'\w423

0

846 847

(a) (b)

u

21

^ 98 99

^vJ. allocated

J ,

ljJXJk.

26 27>~\)

—V.53 V-^^ 55
ISC for .

allocation

\V-\ 217

846 847

_t

(C)

846 847 874

(d)

875

312 <»

8

21

4
~4

-2

-1

0

Fig. 5. Allocating an ISC of size 149 in a 9D hypercube.

m
A.l.b. Deallocation

During the deallocation process, the proposed strategy tries
to combine the released subcubes with the existing free sub-
cubes to form the MSIS. Theorem 2 proves that the dealloca-
tion procedure always maintains the MSIS (though the same
can not be said about the allocation process). The deallocation
process consists of two phases. In the first phase, free sibling
subcubes are combined and the parent is marked free. This
process continues until the sibling of the free subcube is not
free or the entire hypercube is found to be free (Example 9). In
the second phase, free subcubes of different dimensions are
grouped to identify free ISCs in the system. A formal descrip-
tion of the algorithm is described below followed by examples.

»
Step 1. Let L = {£,, S2, Sm] be the subcubes of the ISC

(to be deallocated) arranged in the increasing order of their
dimensions du d2,..., dm, respectively.

(Steps 2-4 try to combine free sibling nodes to form higher
dimensional free subcubes as much as possible.)

Step 2. i = 1. Remove St from L.

Step 3. If the sibling Sf of S,- is free:
(i.e., Sf has no subcubes beneath it in its ISC now as S,- is being
released as a free node (and hence can not have any free de-
scendant nodes with whomi Sf can combine to form an ISC).)

• If Sf is the head of the ISC: Remove the ISC from the isc
list and update the ancestors of Sf.

• Combine the two siblings Sf and S,- by removing them
from the dynamic binary tree and mark their parent as S,-.
Go To Step 3.

Step 4. If Sf = S,+i (i.e., the sibling is itself among the re-
leased subcubes.)

• Remove SM from L. Eliminate S-, and SM from the tree
and mark their parent as SM.

• i = i+ 1. Go To Step 3.
(Combining free sibling nodes to form the free parent node

ends here. Now we have to form maximal ISCs out of the re-
leased subcubes by traversing up the tree. We start to form the
ISC(s) by starting from the lower dimensional subcubes. S, is
the lowest dimensional free subcube. S denotes the ancestor of

51

DAS'SHARMA AND PRADHAN: PROCESSOR ALLOCATION IN HYPERCUBE MULTICOMPUTERS: FAST AND EFFICIENT STRATEGIES 1115

I©

m

Si whose sibling S* is examined to form the maximal ISCs.)
Step 5. If Si is the root of the dynamic binary tree (i.e., the

entire hypercube is free): insert 5,- in wc[CUBESIZE] and skip
the remaining steps.

Step 6. S = Sh Sf = Sibling of S,: If = maximal ISC under
Si'.list={Si).L = L-[S).

(Si being the lowest dimensional free subcube in L, If de-
notes a lower dimensional ISC that can be readily appended
to L to form a higher ISC. "list" maintains the free subcubes
that will form an ISC.)

Step 7. S = Parent of S. If S is not root of the tree: 5* = Sib-
ling of S.

Step 8. If S is the root of the dynamic binary tree: (search over)

1) If // is not NULL: Remove If from the corresponding
isc list; Update ancestors of the head of I' and append
I' to list.

2) Insert list in the appropriate isc list and update the ances-
tors of its head.

3) Skip the remaining steps.
(Step 9 tries to combine the sibling S' of the ancestor S of

the released subcube £,.)
Step 9. If S1 is free, do the following steps:

1) If 5" has more processors beneath it in its ISC than those
in list and // combined (i.e., it will yield an ISC of higher
size if we choose the ISC to which S' belongs; instead of
the current list):

• If I' is not NULL remove the ISC // from the isc list
and update the ancestors of its head. Append // to list.
Ii' = HULL.

• Insert the ISC formed by list in the appropriate isc list
and update the ancestors of the head of list.

• If L is empty skip the remaining steps. (No higher
ISCs possible.)

• If 5^ is the head of an ISC: Remove the ISC headed by
S1 from the isc list and update the ancestors of S* and
name them as list. Else: Remove the subcubes from S*
onwards from the ISC and name them as list.

• S — S1. list = S" append list.

Go To Step 7.
2) (S* has fewer processors beneath it than list and I'.

Hence, the ISC to which S1 belongs is altered. The sub-
cubes of dimensions lower than S1 are discarded and sub-
cubes in list is combined with S1 instead. The discarded
subcubes form a separate ISC.)
• If S1 is head of an ISC: Remove the ISC from the cor-

responding isc list and update the ancestors of S*.
• Remove the subcubes beneath S* in the ISC and form a

new ISC (call it N).
• If the subcubes in N are descendants of Sf and S: e list:

Append N to list. If = NULL. ,

Else If I,1 is not NULL:

• Remove // from the isc list and update the ances-
tors of its head.

• Append // to list. Set I' = NULL.
• Insert N to the appropriate isc. Update ancestors of

its head.

• list = S" append list. Go To Step 7.
Step 10. If S1 = Si+l: Remove SM from L; Add SM to the

head of list, i = i + 1 and Go To Step 7. (The sibling node S"
turned out to be a higher dimensional released subcube.)

(Since S* is not free we check if any of its highest descen-
dant ISC (iscptr), if any, has more processors than what we
have accumulated so far from the released nodes. If so, this
ISC will combine with the higher dimensional released node to
form a higher ISC.)

Step 11. If S1 is not free (partially allocated) and has more
processors in the maximal ISC beneath it than those in list
and If combined do the following steps. (Since the maximal
ISC beneath S1 has more processors than our current list we
choose the former to combine with higher dimensional sub-
cubes.)

1) If // is not NULL: Remove /* from the corresponding isc
list and update the ancestors of its head. Append // to list.

2) Insert the ISC list in the appropriate isc list. Update the
ancestors of its head.

3) If S - NULL: Skip the remaining steps.
4) Remove the highest ISC beneath 5" from the isc list; up-

date its ancestors, list = this new ISC.

Step 12. Go to Step 7.
The following examples illustrate the deallocation proce-

dure. More detailed examples of this procedure appear in [12].
The deallocated nodes are indicated in the figures by an un-
shaded circle that is crossed. The newly formed ISC is indi-
cated by solid dotted bidirectional arrows whereas subcubes
yet to be considered for deallocation are connected by a solid
bidirectional arrow.

EXAMPLE 9. Let us consider the ISC L- {2, 12, 208, 418,
1,672} that is being released (Fig. 6a). The first phase tries to
collapse the tree by removing free siblings. We start with
node 1,672 (Step 2) which combines with 1,673. The two
nodes are removed from the tree and their parent node 836 is
marked free (Step 3), which combines with node 837, making
their parent 418 free. Node 418 combines with a released
node 419 (removed from L); their parent 209 becomes free
(Step 4). Node 209 combines with its sibling 208, another re-
leased node, and their parent (node 104) is marked free. The
procedure terminates at node 52 since its sibling (node 53) is
not free. All the descendants of node 52 were continuously
removed at each step of this collapsing phase.

It should be noted that in the deallocation process, the entry
for the free ISC with whom the released subcubes interact, is
not changed, until the head of the ISC is involved. The deallo-
cation process is guaranteed to continue till the head of the
ISC once any of its members are changed in the deallocation
process (Step 9.2). This helps us maintain a low time overhead
by updating the isc entry and ancestors of the head of each
affected ISC exactly once.

EXAMPLE 10. (Continued from Example 9.) After the first
phase, we have the scenario of Fig. 6b. Now L = (2, 12),
'list = (52), // = NULL (Step 6). The free nodes will now be
combined to form ISC(s). Node 52 combines with node 27
(list = {27, 52), Fig. 6c). This process continues to include

52

1116 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL.6. NO. 10. OCTOBER 1995

ra

is

(d)

Fig. 6. Deallocation in a 10D hypercube.

10

NodcFrM

To Join with

high«- dimensional

fre« «ibcub«s

(b)

(e)

339

10

9

8

(c)

992

Deallocation Complete

(0

node 12 (Fig. 6d) and node 7 (Fig. 6e). The inclusion of
node 7 indicates that the entry for the old ISC it was head-
ing has to be removed from isc[$] (Fig. 6e) and all the an-
cestors of node 7 have to be updated. The new ISC (list) is
{7, 12, 27, 52}. The inclusion of all these nodes was due to
the repeated execution of Step 9.2. The search process ter-
minates after including node 2 to form the ISC (Step 10)
and inserting an entry for 992 processors for the newly
formed ISC {2,7, 12, 27, 52} in isc[9] (Step 8.2), as shown
in Fig. 6f.

EXAMPLE 11. Let us consider the deallocation of the ISC
L = {3, 9} in Fig.7a. Here, S,- = 9, Sf = 8, list = {9}, and
// = (33, 65}. No tree collapsing takes place here since
node 8 is not free. In the process of ISC,formation, node 9
combines with 5 along with the other smaller subcubes in
the ISC it heads (Fig. 7b), there by ignoring our initial
choice of/' (Step 9.1). At the end of the deallocation phase,
we have the ISCs shown in Fig. 7c.

A.2. Algorithm 2

The allocation strategy proposed in Algorithm 1 does not

maintain the MSIS after every allocation, as 'illustrated in Ex-
ample 6. This problem is eliminated in Algorithm 2. In this
approach, each node maintains a list of all ISCs the beneath it
in the form of an AVL tree, the key being the number of proc-
essors in the corresponding ISCs. The AVL tree helps to
maintain the polynomial time complexities. Updating the an-
cestors will involve updating the AVL trees associated with
them. The deallocation and allocation procedures remain basi-
cally the same as in Algorithm 1 with the following modifica-
tion to the allocation procedure in Step 5.3.

Step 5.3. a) Remove the minimal ISC {s,,S2, •••$} be-

neath Sl (found by searching the AVL tree associated with 5,)

from the corresponding isc list. Update all the ancestors of St.

The proposed noncubic algorithms perform extremely well
for. cubic allocation too. This has been confirmed by the simu-
lation results presented in the next section. Although the ob-
jectives of maintaining MSIS and MSS [13] may seem to be
contradictory in many cases; maintaining the MSIS often acts
as a "good" look-ahead allocation scheme for cubic allocation
and outperforms the MSS-based strategies [12].

53

DAS SHARMA AND PRADHAN: PROCESSOR ALLOCATION IN HYPERCUBE MULTICOMPUTERS: FAST AND EFFICIENT STRATEGIES 1117

7
39

6 .'"%
*■ ^_' "■ - — „

5'

4
5 * (

3 ,''">
/»>« IöT

2' 32
C^N.

1)65

0

130 131 143

2'

1 <■ 16\

J^?)®

(a)

130 131 ' 142 143

(b)

7 119

5

4
— 5
3 ö- K
1 «#c

w
—I nr> 130 131 *-*M42 143

(C)

Fig. 7. Deallocation in a 10D hypereube.

TABLE I
ANALYSIS OF VARIOUS CUBIC ALLOCATION STRATEGIES

Strategy No Cubes Allocation Deallocation Memory Type

Buddy z-'-i 0(n) 0(n) 9(2") first-fit

Gray 3.2" - 3 0(2") 6(2*) 6(2") first-fit

M. Gray 3"
°tej-2") «far2") etej-2")

first-fit

TC 3" °fcr2") Oi.2") 6(2") first-fit

Mod. Buddy n.2"+l 0(n.T) 6(2») 6(2") first-fit

MSS 3" o(?) 0(/t2") 0^3*") best-fit

PC Graph 3" Ofn^5") 0(nrl.-i1") 0(n-'3^) best-fit

Free List 3" 0(nz) Oinh2"^) 0(n2") best-fit

Tree List 3.2" - 3 0{n) 0{n) 0(2") best-fit

Proposed-1 2"*' - 1 0(n2) Oin1) 0(2") best-fit

B. Analysis of the Proposed Strategies

The allocation and deallocation time complexities of Al-
gorithm 1 are 0(n2) each and that for Algorithm 2 are 0(n3)
each. The space complexity of Algorithm 1 is f2(«) and
0(2") and Algorithm 2 is Q(n) and 0(/z2"). The O, 0, Q no-
tations used here are the same as in [19]. The time com-
plexities of allocation and deallocation along with the space
complexity of our algorithm is compared with the existing
algorithms in Table I. Depth indicates the number of adja-
cent subcubes that can form an ISC. The time complexity to
search for an element, insert (or delete) an element in an
AVL tree (be it one of isc lists, or the AVL list associated
with each node to denote ISCs beneath it as in Algorithm 2)
is 0(logN) where N is the number of elements in the AVL
tree [19], [17]. In an isc list of dimension k (or the AVL tree
associated with a node of dimension k) there can be 0(2")
elements and hence any of these operations require 0(n - k)
or 0(n) time. An outline of the derivation follows; detailed
derivation appears in [12].

The allocation time complexities of 0(n2) and 0(/i3) in Al-
gorithms 1 and 2, respectively, can be obtained as follows.

Steps 1 and 2 require 0(h) time each. Step 3 requires 6(1)
time. Step 4 requires 0(h) time due to 0(h) possible iterations.
Steps 5 and 7, each contribute 0(n2) time for Algorithm 1 and
0(nz) time for Algorithm 2. Step 6 requires 0(h) time for Al-
gorithm 1 and 0(n2) time for Algorithm 2. The deallocation
time complexities can be derived as 0(n2) for Algorithm 1 and
0(r?) for Algorithm 2 from Step 8 which requires 0(h) time
for Algorithm 1 and 0(n2) time for Algorithm 2, with 0(h)
possible iterations of Step 8. All the other steps contribute to
lower time overheads.

The space complexity can be derived by recognizing that
the dynamic binary tree may (in the worst case) have 2"* -1
nodes. The space overhead of Algorithm 1 is 0(2") since each
node has a constant overhead. Algorithm 2 requires nodes to
maintain AVL tree of all free ISCs. Since there are less than 2"
free ISCs and each ISC can contribute only one entry to the
AVL tree of each of its ancestors, the space overhead of Al-
gorithm 2 is 0(n.2n).

The following theorems delineate some of the properties of
the proposed strategies. Proofs of these theorems appear in the
appendix.

54

1118 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL.6. NO. 10. OCTOBER 1995

kit

r.::

m

pst

THEOREM 2. Algorithm I maintains the MSIS of type SISC
after every deallocation.

THEOREM 3. Algorithm 2 maintains the MSIS (of type SISQ
after every allocation.

THEOREM 4. Algorithm 2 maintains the MSIS (of type SISQ
after every deallocation.

THEOREM 5. Algorithm 2 maintains the MSIS (of type SISQ
all the time.

THEOREM 6. The number of ISCs recognizable by both the
proposed algorithms is 2.4".

V. SIMULATION RESULTS
AND PERFORMANCE ANALYSIS

The performance of the two proposed strategies is compared
to that of free-list2 and the modified buddy strategy. Simulation
results obtained in [6] and [24] suggest that multiple gray code,
tree collapsing, prime cube graph and free list exhibit similar
performance for cubic allocation. Moreover, for noncubic allo-
cation, the free-list strategy recognizes the same number of ISCs
as the PC-Graph strategy if the search depth is 2 and possesses
complete ISC recognition capability for depth n (Table II).
Therefore, the free list strategy appears to be a typical represen-
tative of a number of allocation strategies. We use both the
depths of 2 and n for simulating the performance separately.
However, we present the results of depth n only as it possesses a
lower waiting time than depth 2 (up to 25% less). Because it is a
bit-mapping strategy, the modified buddy is also compared with
the proposed strategies. Simulation results demonstrate that our
schemes outperform the other two strategies.

The simulator is written in C and is run on a DEC-Station
5000. The actual CPU time required for each allocation and
deallocation is measured in seconds and the system clock is
advanced accordingly. The simulation is event-driven, the
events being allocation and deallocation of tasks. The parame-
ters of interest are:

1) the average waiting time of a job before it is assigned the
required number of processors to execute,

2) the average time required for performing an allocation,
3) the average time required for performing a dealloca-

tion, and
4) the amount of memory required.

The following assumptions are made:

• Interarrival time between tasks: exponential.
• Task service time: exponential and hyper-exponential.
• Scheduling of tasks: FCFS.
• ISC (Subcube) size requested by a task: uniform.

Our interest is primarily in the steady-state behavior of the
system under different allocation strategies. Each run of the
simulation performed at least 500,000 allocations and 500,000
deallocations.

One set of simulations was performed by changing the di-
mension of the hypercube for the set of parameters given in

Table III. It can be seen that the proposed strategies perform the
best in terms of the average waiting time of a job (Fig. 8). The
modified buddy strategy performs poorly even for low dimen-
sions of the hypercube, presumably due to its first-fit nature and
its poor ISC recognition capability. The free list strategy does
not perform well when the search depth is 2. However, for the
depth of n, the free list strategy is comparable to the proposed
strategies for low dimensions. However, as the dimension of the
hypercube increases, the performance of the free list with depth
n starts degrading to the extent that it has a delay of about 4.5
times more than that of modified buddy and about seven times
worse than the proposed strategies for a 16-dimensional hyper-
cube. This can be attributed to the heuristics used in deallocation
which do not perform well when the dimension increases and to
the associated time overheads in allocation and deallocation. The
variance of the modified buddy scheme is much higher than the
proposed strategies (Fig. 9). The variance of FL is comparable
for low dimensions, but for high dimensions it performs poorly
with variance being approximately 100 times worse than ours for
a 16D hypercube. This suggests a higher predictability in waiting
times in addition to the lower waiting times for our strategies
when compared to the other strategies.

A second set of simulations were performed assuming two-

Av. Waiting Time vs Dimension

3

> <

40

35

30

25

20

15

Proposed Algo -•—
Modified Buddy —-

Free List (Depth Jn) •■-■

6 8 10 12 14
Dimension of the Hypercube

Fig. 8. Average waiting limes for uniform distribution.

16

c

Variance in Waiting Times vs Dimension

1200
Proposed Algo ^-^

Modified_£udeV -—— -
 ' tYeeTSIst'TrJepth n) -■>--

1100
B

1000 /

900 ■

800 /

700 /
..<!

600

■ ■ i ■

8 10 12 14 16
Dimension of the Hypercube

2. The procedure for free list was provided by J. Kim and C.R. Das. Fig. 9. Variance in waiting time vs. dimension.

55

DASiSHARMA AND PRADHAN: PROCESSOR ALLOCATION IN HYPERCUBE MULTICOMPUTERS: FAST AND EFFICIENT STRATEGIES 1119

TABLE II
ANALYSIS OF VARIOUS NONCUBIC ALLOCATION STRATEGIES

Strategy Depth NoISCs Allocation Deallocation Memory Type

Buddy n (n-2).2""' +3 0(2") 0(2") G(2") first-fit

Gray n n.2"'-3.2" +1 0(2") 0(2") 6(20 first-fit

M.Gray n 3" -t-22-

-5.2*-'-l °fc]-2") 0(<tir2") efej2")
first-fit

Mod.

Buddy

n ntr _ 2»+i + j

°te]-2") 0(2") 6(2^ first-fit

TC n . 3" +17"
-5.2"-'-l

°tej-2")
(XX) 6(2-) first-fit

PC Graph 2 n.2*-l-n.T

-(n-l).3"+3n

0(n23h 0(fi*3*) CKn-^1*) first-fit

Free List
(Depth 2)

2 n.2M-n.T

-(n-l).3"+3rt

0{n37") <Xj?2P) 0(*-2") first-fit

Free List
(Depth n)

n 0((n\)2) c(n-.2"'

+ n\22")

O&ib2") CKn.2") first-fit

Proposed-1 n 2.4" Oin5) CKn2) 0(2") best-fit

Proposed-2 n 2.4" CKX) . Oin*). .. 0(n.2") optimal

TABLE III
PARAMETERS USED IN SOME SIMLUATIONS

Interarrival time of tasks Service Time of Tasks ISC Size Distribution

Exponential Exponential Uniform

Mean = 11 sees Mean= 10 sees —

phase hyper-exponential distribution [22] of job residence times.
The two phase hyperexponential distribution consists of two
exponential distributions where the residence time is generated

3 from the first exponential distribution (mean fi{) with a prob-

ability p and from the second distribution (mean /z2) with a prob-

ability 1 —p. For our simulations, we have assumed JJ-i=lQ sees,

H2 = 90 sees, p = 0.9. Fig. 12 presents the relative average wait-
ing delay as a function of dimension for an utilization of 0.4. The
utilization of the system can be derived as " = ^. where n

represents the average number of processors demanded by a

task, p. represents the average job residence time, A represents
the job arrival rate (inverse of inter-arrival time). The proposed
strategy outperforms the other strategies due to our good ISC
recognition capability combined with the best-fit nature of our
scheme, as described earlier.

A third set of simulations were performed by changing the
rates of arrival for a 12D hypercube while keeping the other
parameters the same as the first set of simulations. Results for
various dimensions indicate that our strategy outperforms the
other two under all traffic conditions due, to the reasons men-
tioned above. Fig. 10 shows the response of average delay for
various arrival rates for a 12D hypercube. The trends were
similar for hypercubes of other dimensions and for the pseudo-
normal distribution of task sizes as well. (The pseudo-normal
distribution a triangle distribution, mimicing a normal distri-
bution [8], [12].)

A fourth set of simulations were run assuming a job-mix of
both cubic and noncubic requests. The probability of having a
cubic request was varied for a 12-dimensional hypercube
(since the FL exhibits poor performance for higher dimen-
sions). The parameters for the arrival and job residence times
are the same as in Table III. The average waiting delays are
shown in Fig. 11. It can be observed that our scheme outper-
forms the FL strategy. However, the difference in performance
diminishes as the number of (exclusively) cubic requests in-
creases. This confirms the earlier observations [6], [7], [20]
that all the allocation strategies behave the same for cubic al-
location. However, our simulations indicate that when noncu-
bic requests are involved, an efficient allocation strategy may
significantly improve the performance in hypercubes.

In all the four sets of simulations our strategy had the least
execution times for both allocation and deallocation. Fig. 13
presents results for the first simulation set The free list performs
the worst, which is understandable, given the time complexities
in Table II. (It should be noted that the goal of the free list strat-
egy was to provide a strategy with complete recognition and
best-fit search capability for cubic allocation, at the expense of
high time and space overheads.) The modified buddy also has a
higher average allocation and deallocation time than the pro-
posed strategies, as expected. The free list had a large average
deallocation time (e.g., more than 2,000 times than ours for a 16-
dimensional hypercube). The allocation and deallocation times
for both the proposed strategies are almost identical.

56

t:CC-

i r.-
i
1120 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.6. NO. 10. OCTOBER 1995

Av. Waiting Time vs Arrival Rate
80 V' X " ' '

\ -\ -Proposed Algo -•—
110

70 A ; \ Modified Buddy -•— . 105
a \ 1 \ Free List (Depth n) -»--
4) \ ** * 100
</] 60 \ \ * \ • ^ 95 >

SO \ * v >> c
r-i 90

Q \ « x a
D) 40 85
C V^ \ \ >
XJ < 80
«J 30
s

\. a. ^-.^ 75
> 20 >v """"-~~~»
< ^-—__""" - :5----- 70

10
.i. 1 1 1 1 1 * 65

8 9 10 11 12 13 14 15
Inter arrival rate of jobs (sees)

Fig. 10. Uniform distribution for a 12D hypercube.

Av. Waiting Delay vs Dimension

•

Proposed Strategy —— j
Modified Buddy -*—;•'"

Free List (Depth 2) •'-/
Free List (Depth n) -v— i

--0 /' •

t . .■**"

 "

9 10 11
Dimension

12 13 14

Fig. 1Z Average waiting delay vs. dimension.

Av. Waiting Time vs Fraction of Cubic Request Av. Allocation. Time vs Dimension

IP

«J

c

a
2

3

Zi. -=rz. 1 1 1 1 1 T 1 1

~\ Proposed Strategy 1 ——
20 \ Free List -*—

^
18 \

\ \
16 \

14 \
N. \

12 * N. ^

10 \ \

8 ^^\ \
^V^ *»,^

6
^ **"*■■*

"~~~ ^~~^ **"**■*

4
~~~~—■"-~--li 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 
Probability of Cubic Requests 

Fig. 11. Average waiting times for various job-mixes. 

0 08 

,  n 07 
u 
(ft 0 06 
o 
6 0 05 
E- 
C 
0 0 04 
-H 
JJ 
a 
o 0 03 
0 
W 

< 0 02 

> 0 (11 < 

0 

■ i- 
Proposed Algo -•—/ 

- Modified Buddy -*--• ; 

• 
Free List (Depth n) -«-.* / 

/ / 
• i • 

• i 
• t 

• i 

• 

t 
'    i 

>     t 
*     i 

J i 

'sr'                  ! 
t 
i 

J- 
.O*                     s' 

r                i                i                                      1             

8      10      12      14 
Dimension of the Hypercube 

16 

Fig. 13. Average allocation time vs. dimension. 

In all the four sets of simulations both our strategies per- 
formed identical with respect to delays and the (de)allocation 
times. The difference in time complexities arises because the 
second algorithm keeps track of all the ISCs beneath a node 
whereas the first algorithm just keeps the maximal ISC. Pos- 
sibly, for the sizes of hypercubes we have considered, not 
many nodes in the dynamic binary tree have many ISCs be- 
neath them to make an impact in the performance and alloca- 
tion/deallocation time. It may be possible that if we further 
increase the dimension of the hypercube we may see some 
difference in their performance under high arrival rates. 

The maximum amount of memory required by the various 
strategies were also measured for the various simulations per- 
formed. (The memory requirements was measured by keeping 
track of the number of "malloc's and "fre'e's performed and 
adding that to the fixed memory used by the strategy.) Figs. 14 
and 15 represent the memory requirements for the various 
strategies assuming the same set of parameters given in Table 
III. For low dimensions (Fig. 14), the modified buddy has the 
lowest memory requirement as the overhead of maintaining the 

free lists in terms of pointers and other information per node in 
the dynamic binary tree dominates. However, as the dimension 
of the hypercube increases, our strategy has the least memory 
requirement, as the dynamic binary tree saves us the space by 
pruning the nodes that are not needed. The Free-list has the 
worst memory requirement as it needs to form all possible 
subcubes from a released subcube. This scenario does not 
change even under extremely high traffic rates (Fig. 15). 

From the simulations it can be said that our strategy per- 
forms the best in terms of all the four parameters of interest 
for both cubic and noncubic requests. Although all the 
strategies result in the same average waiting delay for (only) 
cubic requests, as reported in earlier studies [20]. [23], the 
average waiting delay improves significantly in the presence 
of noncubic requests. For noncubic allocation, an efficient 
processor allocation scheme may reduce the waiting delays 
significantly, unlike cubic allocation. This is similar to the 
submesh allocation problem in meshes [9]. It can be attrib- 
uted to the fact that in noncubic allocation, there can be re- 
quests for 2" sizes and the nature of the allocation policy 

57 



DAS SHARMA AND PRADHAN: PROCESSOR ALLOCATION IN HYPERCUBE MULTICOMPUTERS: FAST AND EFFICIENT STRATEGIES 1121 

may have a great impact on subsequent requests; unlike the 
cubic allocation where the nature of the allocation policy 
does not have a considerable impact on subsequent requests 
because of the limited number (n + 1) of requests possible. 
Though our ISC recognition capability could be better, the 
low time complexities and our capability to effectively 
maintain the MSIS of ISCs of type SISC after every alloca- 
tion and deallocation along with our lower memory require- 
ment for high dimensions makes it extremely effective. This 
effect becomes more prominent as the dimension of the hy- 
percube increases. Further performance improvements may 
be possible by using an efficient job scheduler along with the 
proposed processor allocator, as demonstrated for cubic re- 
quests in hypercubes [20] and in meshes [10] or by using a 
time-sharing strategy [11]. 

percube systems and is targeting for 65,536 node hypercube 
systems for tera-flops performance [21]. As these sizes grow, 
it will become virtually impossible to use near optimal al- 
gorithms with exponential and super-exponential time com- 
plexities, given limitations on processor speed imposed by 
the technology. 

Implementing relatively efficient allocation and deallocation 
algorithms with very low time and space complexities becomes 
desirable so host computers do not perform only allocations and 
deallocations. This will ensure lower turn-around times for indi- 
vidual tasks, as well. The proposed scheme is, indeed, a practical 
solution with its polynomial time overheads for both allocation 
and deallocation, its a low memory overhead and its lowest av- 
erage waiting times for jobs among all existing strategies. 

VI. CONCLUSIONS 
APPENDIX 

fB 

i 

-'„« 

Sizes of manufactured hypercubes are increasing, ex- 
pected to continue so as demand for parallel computation 
increases. Currently, nCUBE manufactures 8,192 node hy- 

Memory Requirement vs Dimension 

D 

TJ 

u 

a 
a. 

1 
0) 

60000 

50000 

40000 

30000 

20000 

10000 

0 * 

Proposed Algq1 2 
Free List 

Modified Byddy 

8      10     12     14     16 
Dimension of the Hypercube 

Fig. 14. Memory requirement of various strategies. 

Memory Requirement vs Rate 

■a 
ai 
u 

HI « 

& 
8 
01 

90000 • 

80000 

70000 

60000 

50000 r 

40000 

30000 

20000 

10000 

0 

"Propose^ Algo 2 -•— 
Fr^e List —-— . 

Modified\Buddy -»-• 

«.  

a g . -o- . -o .. . . ...... 11 

6     7     8     9     10    11    12 
Inter arrival rate of jobs (sees) 

Fig. 15. Memory requirement of various strategics vs. job arrival rate for a 
I4D hypercube. 

THEOREM 1. SISC is an ISC. 

PROOF. From definition 5, if 5= [St, S2 Sm) is a SISC, the 
sibling of S; is the common ancestor of {SM, .... Sm}. Hence 
all the subcubes in {Si+l, Si+2, .... Sm] are at Hamming dis- 
tance 1 from Si with exact distance between S-, and Sj as 
d-, - dj+ 1 (J > i). This is because, since all the subcubes are 
represented in the binary tree their xs appear to the extreme 
right and the Hamming distance between any node and its 
sibling (or the sibling's descendants) is 1. Thus any two 
subcubes in S will meet the Hamming distance and exact 
distance criteria mentioned in Definition 3. 

THEOREM 2. Algorithm 1 maintains the MSIS of type SISC 
after every deallocation. 

PROOF. Suppose during deallocation there is a subcube headed 
by S' that could not be combined with the higher_dimen- 
sional subcube S (and is a descendant of the sibling S of 5), 
but is of higher size than what S is combined with to form 
an ISC. This is not possible given that while combining S 
with lower dimensional subcubes we check for the highest 
ISC beneath 5 to combine with_S. Hence if S" is the highest 
incomplete subcube beneath S it would have combined 
with 5. Thus the algorithm maintains the MSIS (of type 
SISC) after every deallocation. 

THEOREM 3. Algorithm 2 maintains the MSIS (of type SISQ 
after every allocation. 

PROOF. Suppose the Algorithm 2 chooses an ISC S = 
[Si, S2, -, Sit SM,.... Sm) whereas an ISC S" = [Su S2,..., Sit 

S'i+i, ..., S'p] with fewer nodes could satisfy the request. 
(5 and S" match in the first i subcubes (i > 0)). Say i = 0. So 
Algorithm 2 has chosen an ISC from the isc list that is not 
the least sized ISC to satisfy the request. This contradicts 
Step 2 of the algorithm. Thus it is not possible. Say / > 0, 
i.e., the algorithm chose the same ISC as what the optimal 
would have but after allocating i subcubes the proposed al- 
gorithm failed to recognize the presence of {S'i+U S'i+i,.... S'p] 
as the minimal ISC beneath the sibling of 5; that could sat- 
isfy the remaining number of nodes required. This is also 
impossible as we maintain all ISCs beneath a node in the 

58 



Il$2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS.  VOL.6. NO. 10. OCTOBER 1995 

m 

form of an AVL tree and search for the minimal ISC be- 
neath the sibling of every allocated node (Step 5.3.a). Hence 
such a scenario is impossible to arise. Thus the strategy 
maintains the MSIS after every allocation. 

THEOREM 4. Algorithm 2 maintains the MSIS (of type SISQ 
after every deallocation. 

PROOF. The proof of this will be exactly the same as Theo- 
rem 2 as the algorithm is also capable of recognizing the 
maximal ISC beneath it in every step of deallocation like 
Algorithm 1. 

THEOREM 5. Algorithm 2 maintains the MSIS (of type SISQ 
all the time. 

PROOF. Since we start with the entire hypercube (which is an 
MSIS) and maintain the MSIS after every allocation and 
deallocation (previous two theorems), the MSIS is always 
maintained. 

THEOREM 6. The number of ISCs recognizable by both the 
proposed algorithms is 2.4". 

PROOF. Since the proposed algorithms recognize all SISCs we 
have to find the number of SISCs in an n-dimensional hy- 
percube. Say T(k) represents the number of ISCs with a 
particular it-dimensional subcube as its head. A k- 
dimensional subcube can combine with all the ISCs beneath 
its sibling (including no ISC—in which case we have just a 
subcube). Thus, T(k) = 2.T(k - 1) + 22.T(k - 2) + ... + 
2'.T(k - 0 + ... + 2* + 1 as there can be two k - 1 dimen- 
sional subcubes with whom the ^-dimensional subcube can 
combine, 4, k - 2 dimensional subcubes with whom the 
^-dimensional subcube can combine and so on. The 1 repre- 
sents the case when no other subcube combine with the 
^-dimensional subcube. Expanding T(k) we can see that 
T(k) = 4.T(k - 1) with the boundary condition that 7(0) = 2 
(1 for including the node and 1 for not including). The 
number of ISCs in an n dimensional hypercube is T(n) 
where the last term 1 would indicate a full hypercube in- 
stead of the NULL set. Thus, T(n) = 2.4". 

ACKNOWLEDGMENT 

This research was supported by the U.S. Air Force Office of 
Scientific Research and a Texas ATP grant. 

REFERENCES 

[1 ]    A. Al-Dhelaan and B. Bose, "A new strategy for processor allocation in 
an  N-cube multiprocessor," Proc  Int'l Phoenix Conf.  Computing 
Comm., pp. 114-118, Mar. 1989. 

[2]    S. Baase, Computer Algorithms: Introduction to Design and Analysis, 
Addison Wesley, Nov. 1988. 

[3]    M.S. Chen and K.G. Shin, "Processor allocation in an n-cube multi- 
processor using gray codes," IEEE Trans. Computers, vol. 36, no. 12, 
pp. 1.396-1,407, Dec. 1987. 

[4]    M.S. Chen and K.G. Shin, 'Task migration in hypercube multiproces- 
sors," Proc. 16th Ann. Int'l Symp. Computer Architecture, pp. 105-111, 
May 1989. 

[5]    M.S. Chen and K.G. Shin, "Subcube allocation and task migration in 
hypercube multiprocessors," IEEE Trans. Computers, vol. 39, no. 9, 
pp. 1,146-1,155, Sept. 1990. 

[6]    P.J. Chuang and N.F. Tzeng, "Dynamic processor allocation in hy- 
percube computers," Proc. 17th Ann. Int'l Symp. Camp. Architecture, 

May 1990. 
[7]    D. Das Sharma and D.K. Pradhan, "A novel approach for subcube allo- 

cation in hypercube multiprocessors," Proc. Fourth IEEE Symp. Paral- 
lel and Distributed Systems, pp. 336-345, Dec. t992. 

{8]    D. Das Sharma and D.K. Pradhan, "Fast and efficient strategies for 
cubic and noncubic allocation in hypercube multiprocessors," Int'l 
Conf. Parallel Processing, vol. I. pp. 118-127, Aug. 1993. 

[9]    D. Das Sharma and D.K. Pradhan, "A fast and efficient strategy for 
submesh allocation in mesh-connected parallel computers," IEEE Symp. 
Parallel and Distributed Processing, pp. 682-689, Dec. 1993. 

[10] D. Das Sharma and D.K. Pradhan, "Job scheduling in mesh multicom- 
puters," 1994 Int'l Conf. Parallel Processing. 

[II]  D. Das Sharma, G£>. Holland, and D.K. Pradhan, "Subcube level time- 
sharing in hypercube multicomputers," 1994 Int'l Conf. Parallel Processing. 

[12] D. Das Sharma and D.K. Pradhan, "Novel strategies for cubic and non- 
cubic allocation in hypercube multiprocessors," Technical Report TR- 
93-023, Dept. of Computer Science, Texas A&M Univ. ' 

[13] S. Dutt and J.P. Hayes, "On allocating subcubes in a Hhpercube multi- 
processor." Proc. Third Conf. Hypercube Computers and Applications, 
pp. 801-810, Jan. 1988. 

[14] C. Hu. M. Bayoumi, B. Kearfott, and Q. Yng, "A parallelized algorithm 
for the the preconditioned interval newton method," Proc. Fifth SIAM 
Conf. Parallel Processing for Scientific Computing,Mas. 1991. 

[15] J. Kim. C.R. Das, and W. Lin, "A top-down processor allocation scheme 
for hypercube computers," IEEE Trans. Parallel and Distributed Sys- 
tems, vol. 2, no. 1, pp. 20-30, Jan. 1991. 

[16] J. Kim, C.R. Das, and W. Lin, "A processor allocation scheme for hy- 
percube computers," Proc. 1989 Int'l Conf. Parallel Processing, vol. II, 
pp. 231-238, Aug. 1989. 

[17] E. Horowitz and S. Sahni, "Data structures in Pascal," Calgotia Book- 
source, 1984. 

[18] K.C. Knowlton, "A fast storage allocator," Comm. ACM, vol. 8, no. 10, 
pp. 623-625, Oct. 1965. 

[19] D. Knuth, The Art of Computer Programming: Sorting and Searching. 
Reading, Mass.: Addision-Wesley, 1973. 

[20] P. Krueger, T.-H. Lai, and V.A. Radiya, "Processor allocation vs. job 
scheduling on hypercube computers," Proc. 11th Int'l Conf. Distributed 
Computing Systems, pp. 394-401, May 1991. 

[21] nCUBE 2 Systems: Technical Overview, nCUBE Corp., Foster City, 

Calif.. 1992. 
[22] K.S. Trivedi, Probability and Statistics with Reliability, Queuuing, 

and Computer Science Applications. Englewood Cliffs, N.J.: Prentice 
Hall. 1982. 

[23] N.-F. Tzeng, H.L. Chen, and P.J. Chuang, "Embeddings in incomplete 
hypercube," Proc. 1990 Int'l Conf. Parallel Processing, Aug. 1990. 

[24] H. Wang and Q. Yang, "Prime cube graph approach for processor allo- 
cation in hypercube multiprocessors," Proc. 1991 Int'l Conf. Parallel 
Processing, vol. 1, pp. 25-32. 

59 



DAS SHARMA AND PRADHAN: PROCESSOR ALLOCATION IN HYPERCUBE MULTICOMPUTERS: FAST AND EFFICIENT STRATEGIES 1123 

i Debendra Das Sharma received the BTech degree 
in computer science and engineering with honors 
from the Indian Institute of Technology, Kharagpur, 
in 1989, and the PhD degree in electrical and com- 
puter engineering from the University of Massachu- 
setts, Amherst, in 1995. Dr. Das Sharma was a re- 
search associate with the Department of Computer 
Science at Texas A&M University, College Station, 
from 1992 to 1994. He has been with the Research 
and Development Laboratory of Hewlett-Packard, 
Roseville, Calif., since 1994. His research interests 

include parallel processing, formal verification and specification of parallel 
architectures, computer architecture, and fault-tolerance. 

I 

Dhiraj K. Pradhan holds the COE Endowed Chair 
in Computer Science at Texas A&M University, 
College Station. Prior to joining Texas A&M, he 
served until 1992 as professor and coordinator of 
computer engineering at the University of Massa- 
chusetts, Amherst. Funded by the U.S. National 
Science Foundation, the U.S. Department of De- 
fense, and various corporations, he has been actively 
involved—and has presented numerous papers—in 
VLSI testing, fault-tolerant computing, and parallel 
processing research—with extensive publications in 

journals over the past 20 years. 
Dr. Pradhan served as guest editor of special issues on fault-tolerant com- 

puting for IEEE Transactions on Computers and Computer magazine, pub- 
lished in April 1986 and March 1980, respectively. Currently, he is an editor 
of several journals, including IEEE Transactions on Computers and JETTA. 
He served as general chair of the 22nd Fault-Tolerant Computing Symposium 
and program chair of the IEEE VLSI Test Symposium. Dr. Pradhan is a 
coauthor and editor of the book Fault-Tolerant Computing: Theory and 
Techniques, volumes I and II (Prentice Hall, 1986; second edition, 1993). He 
is a fellow of the IEEE and the recipient of the Humboldt Distinguished Sen- 
ior Scientist Award. 

in 

r 

60 



V.    Software Fault-Tolerance 

i 

61 



(.V Cooperating Diverse Experts: A 
Methodology to Develop Quality Software 

for Critical Decision Support Systems1 

i>f 

p 

Dhiraj Pradhan 
Herbert Hechtf 

Myron Hecht' 
Fred Meyer 

Nitin Vaidya 

Department of Computer Science 
Texas A&M University 

College Station TX  77843-3112 

*SoIIaR Incorporated 
8421 Wilshire Boulevard, Suite 201 

Beverly Hills CA  90211-3204 

Abstract - The problem of developing software for critical systems in the decision sup- 
port context is considered. The limitations of existing software development methodologies 
are'mentioned and a new methodology, cooperating diverse experts (CDE), is proposed. 
This new methodology draws upon techniques used in multiple version software and in dis- 
tributed recovery blocks. The methodology relies upon the ultrareliable development of a 
parameterizable arbitrator to administer the cooperation of multiple diverse implementa- 
tions (interpretations) of the decision support problem. CDE may be used to develop a 
single reliable software module or it may be used as an operational system in which some 
modules are multiply implemented. 

I. INTRODUCTION 

The lack of reliable software for critical systems has haunted aerospace for decades: the 
launch failure of the Mariner I in 1962, fly-by-wire aircraft, the NASA space shuttle, and 
the NASA Magellan spacecraft. A variety of approaches have been espoused over the last 
two decades to address the problem [25]. Much study has been directed toward the ultimate 
goal of automatic code generation [5, 21]. Figure 1 illustrates the principle. 

Natural Language Specification 

     weakness 

Formal Language Specification 

U 
automation 

code 

Figure 1: Automatic code generation 

1 Research reported supported in part by AFOSR F49620-94-1-0276 and RADC F30602-94-C-013. 

62 



*-     • Any programming project must commence from some natural language specification (or 
understanding) of the problem. This methodology entails adopting, essentially, a very high 

( level (formal) language. The automatic code generation ensures that if the specification in 
'" the formal language is correct then the resultant code is correct. The difficulty is that the 

t-,,., use of the formal language involves one or more of the following problems: 
I; - 

Lv 1. The code generation is not entirely automatic, invalidating the assurance of correct 
code. 

r ' 2. The formal specification language covers only a narrow aspect of application domains 
(so most of the specification will be written in an error-prone high level language). 

t; 3. The formal specification language is considerably abstract and complex; this leads to 
(|"j human error in translating from the natural language specification to the formal speci- 

fication. 

n"i 4. The formal language does not capture certain requirements, for example the timeliness 
of the outputs. (For our purposes, let us define the requirements to be anything not 
captured by the formal specification.)  Once the generated code is modified to satisfy 

te the requirements, the guarantees of the automatic code generation are lost. 

To address these problems, an opposite approach may be used. This allows the code to 
ffe be freely modified. The code is validated by an automated tool that shows whether the code 

matches an independently developed formal specification.   Figure 2 diagrams the method. 
Essentially, the tools derive condition tables from the code, which are then compared to the 
condition tables of the specification. 

verified if equal 

Figure 2: Enhanced Condition Tables (ECT) 

Two representative examples of the approach are described in [1, 7]. Both use condition 
tables [6] as the formal specification language. More labor in development is needed than with 
automatic code generation. The assurance of correctness for this approach is directly related 
to the degree of independence of code development from condition table development. To 
the extent that there is an implication in the development process, from the formal language 
specification to the code, the testament to the code's validity is weakened. 

SoHaR has developed a toolset that consists of tools to semi-automatically parse C or Ada 
code, form condition tables, and formulate rules to resolve the don't cares (more generally, 
any flexibility) in the test set (embodied by the formal specification) to exercise special 

63 



V-'--' 

values. The toolset is currently being used to develop reusable fault-tolerant components 
in Ada. For example, software to administer distributed recovery blocks [11, 20] has been 

validated using the ECT toolset. 
While these and other methodologies show promise, they have additional limitations when 

trying to cope with programming projects for expert systems or for decision support systems. 
In the next section we discuss the nature of decision support systems and the appropriateness 
of adopting a multiple version software (MVS) [4] approach. In Section III, we describe the 
CDE software development process and give a preliminary discussion of the issues involved. 
A testbed is under development at Texas A&M University. Section IV covers some initial 
concerns about the CDE methodology that the testbed will address. We summarize these 
concerns in Section V. 

II. SOFTWARE WITH DIVERSE INTERPRETATIONS 

This work pertains to a development process to arrive at reliable software for critical 
knowledge based systems. These software systems have inherent problems due to inconsis- 
tencies that may exist in their design or in the knowledge base. Since it is unduly complex 
to attempt to resolve these inconsistencies before proceeding with the software development, 
we have devised an approach that allows for the software development to proceed despite 
inconsistencies. The process of testing the resultant software then aids in the identification 

''' and resolution of specification or knowledge ba.se inconsistencies. 
Expert systems are appropriate for aerospace applications involving so-called 'soft' prob- 

••'■ lems under time constraints such that there can be no significant review by human experts. 
These soft problems can include those with demanding real-time constraints, such as threat 
assessment, selection of countermeasures during an engagement, and radar track estimation 

! and prediction. Also, when real-time constraints are not demanding, then decision support 
systems may still be appropriate if there is a significant volume of information to be pro- 

£g cessed.  For example, even with no strict real-time constraints, there may not be sufficient 
If time for human experts to draw detailed conclusions about a significant number of what-if 

scenarios. 
if Methodologies and analytical procedures that enable one to rely on a software product 
^ are of interest due to the cost-intensive and life-critical nature of aerospace systems; but no 

adequate methodologies and procedures have been developed. In particular, verification and 
:. validation techniques for expert systems remain more art than science. While the inference 

engine (reasoning methods) of a software product can be partially validated, there is no 
effective methodology to establish the integrity of the knowledge base or to validate the 

ü; connections between the knowledge base and the inference engine. 
Methods to overcome these difficulties have been proposed [18, 22], but have not been 

j*; demonstrated effective. The results of the research efforts for NRC and EPRI, as assessed in 
_ the SAIC report [16], are not conclusive at all. Therefore, we believe that implementation of 

multiple expert systems and subsequent voting or reasoning is the best available technique to 
achieve high confidence in the dependability of the software product for these applications. 
MVS is applicable to expert systems, unlike most formal methods, and has achieved notable 
results [9]. MVS is sufficiently accepted that the FA A reduces the testing requirements of 
individual versions when they are developed as a MVS system. 

64 



A prototypical architecture for systems with multiple instantiations of software modules 
is shown in Figure 3. There is a broadcast mechanism to ensure that each instantiation of 
each module functions on the same inputs and a decider mechanism to determine the proper 
module outputs. The problem of reaching a consensus on input values (such as sensor 
readings) is well studied [12, 14, 24] and will not be considered here. Architectures such as 
FTMP [8], SIFT [26], and MAFT are meant to treat hardware and communication errors— 
they generally presuppose that any multiple instantiations of an invocation of a module are 
actually replicates of a single software implementation of that module. We will consider 
software architectures where multiple versions of each module are written [4], 

Input 

I Version 3 | 

Oulput 

Figure 3: Multiple version architecture 

When multiple versions of a module are written, the diversity of the versions is the 
principal goal. Research investigations have concentrated on achieving program diversity by 
diversifying various elements of the software development process. For example, experiments 
have used different processors, different programming languages, and different data structures 
(e.g., fixed point in some versions and floating point in others). 

These design diversity experiments revealed that for well implemented multiple version 
software (iMVS) systems, the bulk of faults not tolerated by the system can be attributed to 
those portions of the software development, such as creating the formal specification, that 
were not multiply implemented. Diversifying the specifications is meant to accommodate 
these problems. So one aspect of diversity sought is at the specification level [2, 10]. This 
can include using diverse specification languages in the hope that different types of errors in 
translating natural language specifications to formal specifications or in translating formal 
specifications to code will not be correlated among the versions. 

At this point, consider that there are two ways to view MVS systems. One view is with 
the objective of creating an operational system with the multiple instantiations mapped onto 
one or more processors. The other view is to consider each diverse phase of the software 
development effort as an opportunity to identify errors introduced in that phase or extant 
from previous phases. For example, in going from formal specifications to code, comparison 
of the test results for the different versions can identify coding errors and can also lead 
to the discovery of errors o\ inconsistencies in the specification [3]. Similarly, if the formal 
specifications are diverse, then comparison of the versions could detect errors made in arriving 

65 



(':■■ 

fös 

at the formal specifications and could also lead to the discovery of unclear or inconsistent 

natural language specifications. 
If one imagines a continuum from requirements to code, the MVS philosophy encourages 

pushing diversity so it is as close to the requirements as possible. There is a limitation on this 
diversity due to the necessity in Figure 3 of denning a means to compare the outputs of the 
diverse implementations. Our proposed software architecture achieves comparison of outputs 
by having the implementations provide facilities to submit proposed actions (outputs) to 
each other and evaluate the proposed actions of others. Figure 4 shows the path of the CDE 
methodology from the natural language specification to an operational system. 

Natural Language Specification 

7 
Formal Language Specification module identification 

test code code 

knowledge base 

iteration 

i regression test 

S2i 

Ü 

m 

Figure 4: Cooperating diverse experts 

CDE does not address the testing problem. It is assumed that an initial test set is obtained 
from some formal language specification. Initially, the problem is broken down into fairly 
large modules and each module may be implemented by multiple independent programming 
teams. The bulk of the (potentially inconsistent) knowledge base does not come into play 
until multiple interpretations are being coded. 

Back-to-back testing is conducted on the multiple interpretations and, for each failure of 
an acceptance test noted, a determination is made placing the discrepancy into one ol four 

categories: 

1. The test result expected was not valid. The formal specification requires modification. 

2. There is a coding error in one of the interpretations—rectify. 

3. There is an inconsistency in the knowledge base with a clear resolution. Correct the 

knowledge base. 

4. There is an inconsistency in the knowledge base without a clear resolution. Make the 
formal specification more detailed to generate the additional tests needed to assess the 
circumstances; adjust code as appropriate. 

In addition, the back-to-back testing results can be used to accumulate a set of regression 
tests. Some of the discrepancies (especially case 4 above) are indicative of tests that one 
should ensure are retained when the specifications are modified during software maintenance. 

By relaxing the voting Restriction, an additional layer of diversity is possible. The multiple 
implementations may now be functionally diverse. This action-event model is very flexible 

66 



(>. 

m 

in that interpretations may take entirely different approaches to solving the problem. It 
also, regrettably, puts considerable demands on the interpretations, for they must be able 
to accept events (outputs from other modules) and to assess actions proposed by other 
interpretations. These actions may take on fairly arbitrary forms. Also, it is no longer 
necessary for the software requirements (or natural language specification) to be complete, 

correct, and consistent at the outset. 
As a result, the benefits of the cooperating diverse experts approach are most succinct for 

'soft' problems. When a particular problem is not well understood or has associated with 
it a large and presumably inconsistent human knowledge base, then it is hard to identify 
the inconsistencies and it is even harder to confidently take measures to resolve them. In 
CDE systems, since the constraints of the decider are somewhat pushed away, it is easier for 
the human knowledge inconsistencies to propagate to the code where they can be identified. 
The inconsistencies discovered can then be resolved at the same time that there is greater 
understanding of their effects, because code has already been written and is being tested. 
(Or some inconsistencies can be left in if it is believed that they reflect the natural differences 

in human expert opinion on the problem.) 

III. CDE,DEVELOPMENT PROCESS 

E5 

$BI 

An outline of the phases in a software development effort is shown in Figure 5. A descrip- 
tion of each phase and its relation to the CDE methodology follows: 

Natural Language Specification 

Solution Classification 

Global Message Specification 

Major Module Identification 

Module Interaction Specification 

Local Message Specification 

Module Implementation 

(individual actions, incremental planning} 

<= 10.000 lines 

for each module 

human expert input 

Figure 5: Specification hierarchy 

Natural Language Specification. This is the (English) language formulation of the problem 
and the system requirements. It might not be necessary (and perhaps not appropriate) for 

this to be a detailed specification. 
Solution Classification. An obvious dichotomy occurs when one considers whether the 

problem is naturally solved by means of specifying a plan and then continually improving 
the plan (or adapting it to changing inputs).  We refer to this classification as incremental 

67 

>;j 



Q 

m 

«35 

ft 

planning. The alternative is to slice time into small intervals and to consider changing 
any (or all) possible outputs for each time interval (or continuously) without long-range 
planning. Since we refer to all module outputs as actions, we refer to this classification as 
individual actions. This is the classification generally assumed for hard real-time systems. 
Other classifications may also be appropriate. 

These classifications are mentioned because they have an effect on the global message 
specification required to provide appropriate facilities to the cooperating diverse experts. 
For complex software projects, different classifications may seem appropriate for the various 
modules identified. The sole purpose of solution classification is to determine the aggregate 
facilities that must be met by the global message specification. 

Global Message Specification. The purpose of this stage is to specify the tools necessary 
to implement the cooperating independently written versions of each module. The solution 
classification dictates to some extent the variety of process control and recovery facilities 
that will be needed. The development process is still largely dominated by data structure 
considerations. The physical objects (nouns) that the problem models and their possible 
qualities (adjectives) may be fully characterized at this level. 

Major Module Identification. Assuming that the problem is complicated, it is necessary to 
divide it into, modules;.preferably, with little anticipated interaction between modules. Each 
module will be implemented by more than one programming team with minimal interaction 
between teams allowed. Since the specifications are necessarily vague and the problem is 
hard, the programming teams can be expected to arrive at different solutions. We call these 
solutions interpretations. This is the first point in the development process where verbs 
(e.g., methods) come clearly into play. It is perhaps disadvantageous to break down the 
problem into modules whose complexity is much less than an estimated 10,000 lines of code 
in a procedural language. Every stage of dissecting the problem leaves less to be coded by 
multiple interpretations (and more that is globally specified—single point of failure). 

Module Interaction Specification. It is important that, at this point in the development, as 
much flexibility as possible remains available to the development teams that will implement 
the diverse interpretations. This maximizes the benefits to be gleaned from diversity. For 
example, Figure 6 shows an edge-weighted graph. Suppose that part or all of the module's 
purpose is to compute a minimal-cost path from the position, P, to a destination, D. The 
minimal-cost path for this trivial example is shown in bold. The cost of each edge traversal 
may reflect time or some other undesirable 'cost,' such as hazard (for an escape problem). 

Figure 6: Finding a minimal-cost path 
9 

The software project benefits with respect to diversity if the programming teams are not 
restricted in the algorithms they choose.  One team may choose a best-bud first (breadth- 

68 



m 

first search) approach; another team may opt for a branch-and-bound (depth-first search) 
approach; and another team may solve the problem by computing the transitive closure of 
the adjacency matrix of the graph. 

Local Message Specification. Most of the human knowledge base concerning the problem 
is considered here and during module implementation. At this level, any additional facilities 
needed by the independent software versions are specified. These facilities can provide for 
the exxhange of intermediate results (conclusions). 

Module Implementation. The several interpretations of each module are all run on the 
computing resources available. The various interpretations of the various modules may be 
mapped to 100 processors or to 1. Some design decisions may be affected by this, but the 
effects on the technical correctness of the CDE methodology are presumed small and will be 
ignored in this discussion. As long as facilities are provided for preemptive interrupts and the 
detection of protection faults, catastrophic results will not ensue due to shared processors. 
An interpretation may even implement a section of its 'code' as multiple interpretations— 
spawning the appropriate processes as needed. 

Figure 7 shows one choice for the allowed interactions between the interpretations of 
a module. Each interpretation, during the course of its computations, arrives at. actions 
that it believes to be advantageous. Here, action may mean a-scalar action (individual 
actions) or a change to the current plan (incremental planning). Since software errors may 
occur, the interpretation submits its proposed action to the arbitrator, which chooses another 
interpretation to examine the proposed action. If the latter interpretation approves the 
action, then the arbitrator is informed. 

'*^ r* 

•?'•:» 

V 

*1 <— 

\ 

I 1 

/ 

I3 

Arbitrator 

action 

goal 

r 
Figure 7: Interaction of diverse experts 

The arbitrator is a comparatively simple piece of code that may be implemented with 
confidence. Furthermore, the implementation of the arbitrator is essentially independent of 
the local message specification—that is to say, it consists largely of reusable code. If the 
number (see below) of the approved action matches the number expected and if the action 
descriptions sent to the arbitrator from the two agreeing interpretations match, then the 
arbitrator declares the action taken and duly notifies all the interpretations as well as any 
appropriate external processes. Numbering actions is appropriate, because another approved 
action or external event may have taken place in the intervening time and the approved action 
is not assured to be appropriate under these circumstances. 

The static selection of acceptance testers depicted by the loop graph in Figure 7 is suitable 
for tolerating one software 'error' at a given instance. For static testing graphs, determining 
the degree of error tolerance is a generalization of the thoroughly studied system-level diag- 

69 



nosis problem [13, 19, 23]. The arbitrator may also implement various flexible procedures to 
choose acceptance testers. For example, an idling process may be preferred as an acceptance 
tester Also, the multiple interpretations need not be run simultaneously. The arbitrator 
may adopt an algorithm to spawn interpretations as needed.   See [17] for a discussion of 

these issues. 
Since the interpretations are purposefully diverse, it is natural to be concerned that 

submitted and approved actions might be unduly rare. To remedy this, a facility is provided 
for the interpretations to advise each other of their objectives or internally generated goals. 
Figure 7 depicts the allowed goal transmittals as being the reverse of the allowed action 
submittals. While this is natural, other possibilities are not to be dismissed. 

IV. TESTBED 

A testbed is currently being developed to resolve issues concerning the ODE methodology. 
It uses a single simple programming problem, which is discussed in detail in [15]. 

Analysis of Operating Characteristics 

Developing an application programmer's toolkit and a reliable parameterizable arbitrator 
involves addressing several issues. Four of the problem scenarios that must be overcome are 

discussed in the following. 
Rapid Interpretation. Suppose that an interpretation, I3 in Figure 7, is coded such that 

it submits actions much more frequently than the other interpretations—perhaps it does not 
think very deeply. This induces a performance drain on its acceptance tester, /2. For an 
incremental planning problem, the rapid interpretation might dominate the actions taken 
with its continual minor improvements. The other interpretations could be shut out, because 
with each action taken they must incorporate the changed plan before proposing any action. 
The effect is to reduce the module's effectiveness to that of the rapid interpretation, which 
(under the assumption that its speed comes from a lack of sophistication) may result in the 
module inadequately responding to changes in the physical environment. 

«* Smooth Decision Boundary.  Suppose that an event is becoming more certain (e.g., the 
| approach of an obstacle), for which, an action (EVADE) would be appropriate. The inter- 

pretations, in some order, arrive at the conclusion that the same action is advantageous. 
& Suppose that order in Figure 7 is 73, /2, and then lx. The following scenario would ensue: 1) 
L: /3 submits the action to 72) but it is rejected; 2) I2 submits the action to /,, but it is rejected; 

3) Ix submits the action to I3 and it is approved. The action is not approved until all three 
§ interpretations in our example realize its appropriateness. Half the possible orderings result 
IB in waiting until the third such realization of the action and half the possible orderings result 

in waiting only until the second such realization. This problem can be solved by having 
each interpretation maintain a history of recent, actions submitted to it, but that entails a 
performance penalty. Additionally, a software error, say in Iu could cause the action to be 
delayed until I3 deems it appropriate to resubmit it. Maintaining a history of recent actions 

submitted also handles the case where there is a software error. 
State Corruption. A software error may lead to corruption of the state of an interpreta- 

tion; e.g., an interpretation's representation of the current plan. Then the module's function 
becomes vulnerable to an additional software error until the corrupting error is detected and 

70 

5f 



m 

recovery is completed. As discussed earlier, the arbitrator can logically decide to inject a 
(recovery) exception into the execution of an interpretation. During recovery the system 
remains vulnerable to an additional software error. If that period of vulnerability is poten- 
tially too broad to meet the system reliability requirements, then the interaction between 
interpretations in Figure 7 could be extended to include all approval pairs or it could be 
extended to a cycle on four interpretations—as well as more elaborate options. 

Hint or Beg. The interpretations have the privilege of transmitting their internally com- 
puted goals to each other. This can help offset the problem of infrequent approvals when 
the interpretations are rather diverse. Suppose, as in Figure 7, that the interpretations are 
constrained to send goals only to those interpretations that they conduct acceptance tests 
for. The two natural protocols are when (beg) the arbitrator, perceiving an inadequate ac- 
ceptance ratio, signals a testee to describe to one; of its testers the type of advice it could use 
and when (hint) the arbitrator, perceiving an inadequate acceptance ratio, signals a tester 
to provide advice to one of its testees. Hint appears more sensible since, on conducting an 
acceptance test, the tester could identify a goal (or goals) that is markedly unmet; whereas, 
it is harder to conceive of the testee formulating a request for the type of advice it needs. It 
is conceivable, however, that-the testing interpretation may be implemented in such a way 
that it is difficult to determine a critical goal. In that event, it might be better to leave this 

matter in the testee's demesne. 

V. CONCLUSIONS 

Multiple version software is used to achieve highly reliable software for critical systems, 
such as for the Airbus slats and flaps. Classical multiple version software models are con- 
strained by the requirement to implement voting, or a similar mechanism, on the software 
outputs. This constraint limits the degree of diversity allowed the independent programming 
teams, because their algorithms must reconvcrge to points of comparison. This thwarts at- 
tempts to limit the extent of the unreplicated design/specification phase of the software 
development process, which constitutes a single point of failure, and constrains (limits di- 

versity of) the independent algorithms. 
The proposed methodology uses a test-and-accept mechanism to bypass voting. An effect 

of the mechanism is to relax the necessity that the requirements and high-level specification 
be validated for consistency (readability). Also, conflicts in the human knowledge base 
that the programming teams access do not need to be resolved before multiple version de- 
velopment begins. For programming projects where human understanding of the problem is 
imperfect, differences in the opinions of human experts can be resolved during the test-and- 
accept process. This may have advantages versus requiring (possibly incorrect) decisions to 

make the human knowledge base consistent in advance. 
The methodology relies on back-to-back testing of multiple versions of each module dur- 

ing the iterative development phase. The operational implementation relies on mapping two 
or more interpretations of each module, plus an arbitrator to a multiprocessor or distributed 
processing architecture. Handling of hardware failures is not directly considered; it is as- 
sumed that a separate methodology, such as SIFT, is used to protect against hardware and 

communication failures. 
The arbitrator for each module is the key element in the software architecture. The arbi- 

71 



l~-', 

n 

'• -    • trator is a potential single point of failure. Fortunately, the implementation of the arbitrator 
consists almost entirely of reusable code—it is essentially independent of the local message 

I specification (which describes the format of information exchanged between interpretations). 
The interpretations follow an action-event model. Each interpretation, during the course 

. . of its computations, arrives at actions that it believes to be advantageous.   Here, action 
;•' may mean a scalar action (individual actions) or a change to the current plan (incremental 

planning).   Proposed actions are submitted to the arbitrator, which chooses one or more 
5-;: other interpretations to examine the proposed action.   Based on the acceptance testing of 
i\, proposed actions, the arbitrator decides which actions are approved and suitably notifies the 

interpretations so that they may maintain consistent states. The approved actions released 
Q by the arbitrator are events perceived by other modules and/or they are system outputs. 
?ß The tunable parameters of the arbitrator include the bases for:  1) selecting acceptance 

testers (also possibly the spawning of interpretations); 2) approval/disapproval of proposed 
'■;.; actions; and 3) determining whether to inject an exception into an interpretation to invoke 
' - a recovery procedure (acceptance testing results indicating that the interpretation has a 

corrupted state or other major problem). 
i~-l Plausible uses of CDE include: 1) operational software that tolerates coding/specification 

errors for knowledge based systems; 2) operational software that tolerates knowledge base 
inconsistencies in expert systems; 3) test software to discern inconsistencies in knowledge 
bases; and 4) test software to identify coding/specification errors lor knowledge based systems 
(like back-to-back testing). 

BIBLIOGRAPHY 

[1] J. Atlee and J. Gannon, 'State-based model checking of event-driven system require- 
ments,' IEEE Transactions on Software Engineering, vol. 19, no. 1, January 1993, pp. 
22-40. 

[2] A. Avizienis and J. Kelly, 'Fault tolerance by design diversity: Concepts and experi- 
ments,' Computer, vol. 17, no. 8, August 1984, pp. 67-80. 

[3] P. Bishop, et alii, 'Project on Diverse Software—An Experiment in Reliable Software." 
IFAC Workshop SAFECOMP, October 1985. 

[4] L. Chen and A. Avizienis, 'N-Version Programming:  A Fault Tolerance Approach to 
Reliability of Software Operation,' 8th Fault Tolerant Computing Symposium, Toulouse, 

1 pp. 3-9, June 1978. 

[5] A. Giacalone, P. Mishra, and S. Prasad, 'Facile: A symmetric integration of concurrent 
p and functional programming,' International Journal of Parallel Programming, vol. IS, 
y" no. 2, 1989. 

£,:, [6] J. Goodenough and S. Gerhart, 'Toward a theory of test data selection,' IEEE Trans- 
r:;: actions on Software Engineering, vol. 1, no. 2, June 1975. 

[7] M. Hecht, K. Tso, and S. Hochhäuser, 'The Enhanced Condition Table Methodology for 
[.'. Verification of Critical Software in Ada and C,' 7th International Conference on Testing 

Computer Software, San Francisco, June 1990. 

[8] A. Hopkins, et alii, 'FTMP—-A highly reliable fault tolerant multiprocessor for aircraft.' 
I'"-' Proceedings of the IEEE, vol. 66, no. 10, October 1978, pp. 1221-1239. 

72 

^ 
*££•$ 

m 



fc 

m 

[9] J. Kelly, 'Software Design Diversity,' in Dependability of Resilient Computers, (T. An- 

derson, editor), BSP Professional Books, Oxford, 1989. 

[10] J. Kelly and S. Murphy, 'Achieving dependability throughout the development process: 
A distributed software experiment,' IEEE Transactions on Software Engineering, vol. 

16, no. 2, February 1990. 
[11] K. Kim and H. Welch, 'The distributed execution of recovery blocks:   An approach 

for uniform treatment of hardware and software faults in real-time applications,' IEEE 

Transactions on Computers, vol. 38, no. 5, May 1989, pp. 626-636. 

[12] L. Lamport, R. Shostak, and M. Pease, 'The Byzantine generals problem,' ACM Trans- 
actions on Programming Languages and Systems, vol. 4, July 1982, pp. 382-401. 

[13] F. Meyer and D. Pradhan, 'Dynamic testing strategy for distributed systems,' IEEE 

Transactions on Computers, vol. 38, no. 3, March 1989, pp. 356-365. 

[14] F. Meyer and D. Pradhan, 'Consensus with dual failure modes,' IEEE Transactions on 

Parallel and Distributed Systems, vol. 2, no. 2, April 1991, pp. 214-222. 

[15] F. Meyer and D. Pradhan, 'A Testbed to Identify Issues in the Cooperating Diverse Ex- 
perts Methodology for Resolving Inconsistencies in Knowledge Bases,' Technical Report, 
Texas A&M University Computer Science, (in preparation). 

[16] L. Miller, J. Hayes, and S. Mirsky, 'Guidelines for the Verification and Validation of 
Artificial Intelligence Software Systems,' (preliminary document) Science Applications 

International Corporation, (for NRC and EPRI), September 1993. 

[17] D. Pradhan and N. Vaidya, 'Roll-forward checkpointing scheme: A novel fault-tolerant 
architecture,' IEEE Transactions on Computers, vol. 43, no. 10, October 1994, pp. 

1163-1174. 
[IS] A. Preece, 'Towards a methodology for evaluating expert systems,' Expert Systems, vol. 

7, no. 4, 1990, pp. 215-223. 
[19] F. Preparata, G. Metze, and R Chien, 'On the connection assignment problem of diag- 

nosable systems,' IEEE Transactions on Electronic Computing, vol. 16, December 1967, 

pp. 848-854. 
[20] B. Randell, 'System structure for software fault tolerance,' IEEE Transactions on Soft- 

ware Engineering, vol. 1, no. 1, June 1975, pp. 220-232. 

[21] D. Smith, 'KIDS: A semi-automatic program development system,' IEEE Transactions 
on Software Engineering, vol. 16, no. 9, September 1990, pp. 1024-1043. 

[22] R. Stachowitz and J. Combs, 'Validation of Expert Systems,' Hawaii International Con- 

ference on System Sciences, January 1987. 

[23] N. Vaidya and D. Pradhan, 'Safe system level diagnosis,' IEEE Transactions on Com- 

puters, vol. 43, March 1994, pp. 367-370. 

[24] N. Vaidya and D. Pradhan, 'Degradable Byzantine agreement,' IEEE Transactions on 

Computers, (to appear). 
[25] N. Vaidya, A. Singh, and C. Krishna, 'Trade-offs in developing fault tolerant software,' 

IEE Proceedings (Part E) Computers and Digital Techniques, Nov. 1993, pp. 320-326. 

[26] J. Wensley, et alii, 'SIFT: The design and analysis of a fault tolerant computer for 
aircraft control,' Proceedings of the IEEE, vol. 66, no. 10, October 1978, pp: 1040-1054. 

73 

■? 


